返回首页

海洋每秒吸收太阳能量(海洋吸收太阳辐射)

来源:www.shuishangwuliu.com   时间:2023-06-18 19:53   点击:50  编辑:jing 手机版

1. 海洋吸收太阳辐射

要理解海陆间循环得以完成的几个环节的能量来源:

①蒸发和水汽输送环节,其能量是来自太阳辐射能;

②地表径流和地下径流环节,其能量主要是来自重力能。确切说不只是来源于太阳辐射,还有月球的引力。

海洋中,太阳的辐射使得海水温度分布不均,进而产生对流,我们利用的水能一般来自于水的机械能,所以是太阳辐射给予水循环的动力。

2. 海洋吸收太阳辐射百分比

海洋与陆地即吸收太阳光的热量,同时也对太空辐射释放热量。当吸收的热量多于辐射释放的热量的时候,温度就会上升,否则就会降温。

夏天海洋与陆地吸收的热量均多于辐射释放的热量,由于海水的热容量大于陆地的岩石、泥土,海水吸收同样的热量温度上升的幅度就比陆地低,所以在夏天就出现海洋的温度比陆地温度低的现象了。

3. 海洋吸收太阳辐射的主要影响因素是什么?

海水内部的流动是会影响海洋的热平衡的。

海水温度的高低主要取决于对太阳及大气辐射的有效辐射吸收、蒸发损失热量、海气接触面之间通过大气湍流热交换和海水内部的流动(海流、涡流、波动)等多种因素形成的热收支,即海洋热平衡。

研究海水温度能为我们实施海洋计划提供最有价值的数据支撑。

4. 海洋吸收太阳辐射的绝大部分被储存在海洋的

火星。

八大行星中曾经拥有海洋的行星是火星。 火星大气以二氧化碳为主(95.3%),既稀薄又寒冷,遍布撞击坑、峡谷、沙丘和砾石,没有稳定的液态水。南半球是古老、充满撞击坑的高地,北半球则是较年轻的低地平原。 火星上有太阳系已知最大的山—奥林帕斯山和最大的峡谷—水手号峡谷。火星有两个天然卫星。

5. 海洋吸收太阳辐射是长波还是短波

这主要是由于海洋和陆地之间的热力性质差异所决定的,具体如下:

1.吸收太阳辐射的能力不同:陆地反射率15%-30%,水的反射率10%-20%,所以在同样条件下,水比陆地多10%-20%,即水的吸收太阳辐射的能力比陆地强。

2.投射太阳辐射不同:水对大多数波段的太阳辐射都是透明的,除了红光和红外线以外,可见光和紫外线等都可以投射到水的很深层,陆地是不透明的,随意太阳辐射主要集中在陆地表面。

3.传递能量的辐射不同:陆地是固体的,主要是靠分子传导的,岩石土壤导热率小,所以太阳辐射的能量集中在地面表层,而水是流动的,在海洋当中存在这平流,对流,海流,洋流以及水下,水平流等等,所以,海洋可以把太阳辐射能力分布到深层。

4.比热不同:岩石土壤等组成地面的主要物质的比热比水体要小,水的比热容大约是4.1868(j/g.k),岩石的比热容为0.837(j/g.k),所以使水温升高1摄氏度的能量可以使岩石土壤升高5摄氏度左右。

5.水分蒸发耗热状况不同:水体水分供应充足,蒸发耗热比较大,失热多,温度不易升高,水体上面由于蒸发存在着大量的水汽,可以大量的吸收水体的长波辐射,然后以大气逆辐射的形式返回给水体,因而水体不易剧烈降温,此外,水体上方的云体比较多,热量不容易急剧散失,温度变化比较平缓。 基于以上水体与陆地的热力性质的差异,所以同纬度的海洋与陆地在同一时刻,海洋的温差较小,而且夏天陆地热海洋冷,冬天却正好相反。

此外,由于海洋的热力性质,使得海洋有了热力惰性,所以海洋对于太阳辐射的季节变化要比陆地晚一个月左右。

6. 海洋吸收太阳辐射绝大部分储存于什么中

海底沉船的钢材具有辐射,但是并不会对环境造成污染和危害。原因:海水是一种很好的屏蔽辐射的介质,当船只在海水中沉没时,大多数钢材会被海水包裹,导致辐射泄露的几率大大降低。另外,一旦回收,会根据国际标准对其进行处理,从而防止对环境造成危害。目前已经有相关研究表明,即使是核电站的核废料,只要储存在沉睡在海底的容器里,也不会对海洋和周边环境造成明显的危害。这项研究可以为如何安全处置核废料提供一些有益参考。

7. 海洋吸收太阳辐射的原理

原子核反应有关的能源正是核能。原子核的结构发生变化时能释放出大量的能量,称为原子核能,简称核能,俗称原子能。它则来自于地壳中储存的铀、钚等发生裂变反应时的核裂变能资源,以及海洋中贮藏的氘、氚、锂等发生聚变反应时的核聚变能资源。这些物质在发生原子核反应时释放出能量。目前核能最大的用途是发电。此外,还可以用作其它类型的动力源、热源等。太阳能是太阳内部连续不断的核聚变反应过程产生的能量。地球轨道上的平均太阳辐射强度为1,369w/㎡。地球赤道周长为40,076千米,从而可计算出,地球获得的能量可达173,000TW。在海平面上的标准峰值强度为1kw/m2,地球表面某一点24h的年平均辐射强度为0.20kw/㎡,相当于有102,000TW 的能量。

尽管太阳辐射到地球大气层的能量仅为其总辐射能量的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤,每秒照射到地球的能量则为1.465×10^14焦。地球上的风能、水能、海洋温差能、波浪能和生物质能都是来源于太阳;即使是地球上的化石燃料(如煤、石油、天然气等)从根本上说也是远古以来贮存下来的太阳能,所以广义的太阳能所包括的范围非常大,狭义的太阳能则限于太阳辐射能的光热、光电和光化学的直接转换。

8. 海洋吸收太阳辐射的原因

一、海面温度

大量观测结果证实,平流雾大都出现在冷海面水域上空。尤其在沿着气流方向海水表面温度迅速降低的水域,即寒暖流交汇区的冷水面上或水平温度梯度较大的海陆交界地区,移经其上的暖湿气流更容易变性冷却使水汽凝结,雾在这些水域就更加频繁多见。

冷的海面是形成海雾的重要条件,但是海水表面温度“冷”有一临界值,观测表明,海雾发生地区域大致限于表向水温低于20℃的冷海面。我国沿海水域的海雾发生区域大多与这个水温界限相符合。

二、海气温差

海水表面温度与其上的空气温度之间差值(即气温与海面水温之差)究竟达到多大时,才最有利于雾的生成呢?对于这个问题,过去曾经有人认为,海气温差愈大,愈有利于雾的形成。其实不然,大量的观测事实表明,当气温高于海面水温左右时,雾出现最多。

在气温高于水温的情况下,雾次数随着气温与水温差值的增大而逐渐减少,当差值大于一定值后,雾就很少发生。这是因为海水有着巨大的比热容,海面水温不会很低,若气温比水温高得多时,空气的饱和水汽压就变大,难以达到饱和,从而不利于海雾的生成。

另外,当在气温稍低于水温时,也可以见到有相当数量的雾出现,并且雾次数随着水温高于气温的差值的增大而不断减少。在气温高出海温2-3℃时雾最常见,雾大多集中在气温高出海温0-6℃范围内,当温差达到以上温度的时候雾极少出现。

三、气流风场

暖湿气流的长时期存在,对海雾的生成与发展相当重要,它可以不断向雾区补充成雾必须的大量水汽和热量。所以有雾生成时,一般盛行偏南或偏东气流。在我国,有利于雾形成的风向随海区而异。一般说来,东中国海水域,以偏南风时雾最多,南海则以偏东风时雾最为常见。

海上风速的大小与海雾的形成也有着密切的关系。风速过大,会使空气层中产生较强的湍流交换,促使上层空气的热量往下传送,妨碍低层冷却,不利于雾的形成。

风速太弱,一方面空气中的湍流交换相当弱,只能使海面上很浅薄的一层空气冷却,同时风速太弱也不能大量输送暖湿空气到达海面,即使有雾生成,也不能长久维持。

四、水汽含量

过去不少人认为,雾形成时的相对湿度应达100%,即处于饱和状态。近年来的许多观测结果表明,海雾形成时的相对湿度并不一定达到100%,有时相对湿度在80%以上便有雾发生,这可能与海上有丰富的吸湿性极强的凝结核(盐粒)有关。相对湿度的大小和雾的关系还有某种日变化的特征。

一般在凌晨和夜晚时刻发生的雾大多数出现在空气处于或接近饱和状态之下,并且随着相对湿度值的渐渐减少,雾次数会迅速减少;当相对湿度低于95%时,就不再有雾生成,在中午时间,雾次数随相对湿度的减小变化不大,当相对湿度低到88%时,还能有雾发生。

较强的逆温层结雾是大气处在稳定层结状态下的一种凝结现象。在海雾的形成过程中,低层大气通常总有逆温层存在,它像一个无形的盖子,阻挡着水汽向上空扩散,抑制低层大气的对流发展,使水汽和凝结核积聚在低空,对雾的形成极为有利。

在稳定性的雾中,最典型的温度垂直廓线是雾层中表现为微弱的降温和等温,而在其上则是逆温。平流雾雾层上的逆温的出现率约为90%左右。通常逆温强度越强时,逆温层的厚度越大,常见的逆温层厚度在400—500米左右。

五、大气环流

海雾的形成往往与一定的天气系统活动相关联,特别是在高气压区域内,对雾的生成和维持最为有利。虽然雾多见于高压区内,但其他天气系统伴随的雾也有一定的比重。

海雾的影响与危害

每年冬去春来,气候逐渐变暖的时候,海雾也随之而来。海雾无论在海上还是在沿岸地带,都因其恶劣的能见度对交通运输、海洋捕捞和海洋开发工程以及军事活动等造成不良影响,据统计海上船舶之间的碰撞事故80%是因雾导致能见度不良而引起的,雾水中的盐分对建筑物的侵蚀也是不可忽视的。

雾已经对海上生命财产安全和海域清洁水源环境构成了严重的威胁。因此海雾是一种灾害性天气。海雾预报不仅对海上和沿海地区的交通和农渔业很有意义,而且对海军和航空部队尤其重要。

9. 海洋吸收太阳辐射吗

海洋能源有哪些种类?

1.潮汐能

所谓潮汐能,就是因月球引力的变化引起潮汐现象,潮汐导致海水平面周期性地升降,因海水涨落及潮水流动所产生的能量。

潮汐能可以像水能和风能一样用来推动水磨、水车等,也可以用来发电。当前,潮汐能的主要功能就是发电。

世界最大的潮汐能源系统

利用潮汐能发电,首先要做的就是在海湾或河口建筑拦潮大坝。形成水库,在坝中修建机房,安装水轮发电机,利用水位差使海水带动水轮机发电。建成潮汐发电站后还有利于海产养殖业的发展。

世界上,潮汐能主要多分布在潮差较大的喇叭形海湾和河口地区,如加拿大的芬迪湾、巴西的亚马逊河口、南亚的恒河口和中国的钱塘江口等都蕴藏着大量的潮汐能。

我国海岸线的长度为1.8万公里,潮汐能资源十分丰富。在潮汐能资源的开发利用上,目前我国沿海地区已经修建了一些中小型潮汐发电站。在温岭江厦港,就有一座我国规模最大的潮汐发电站——江厦潮汐发电站,它还是世界第三、亚洲第一大潮汐发电站。潮汐发电站受潮水涨落的影响,具有很大的不稳定性,海水对水轮机及其金属构件的腐蚀及水库泥沙淤积问题都较严重。这些问题都是急需解决的,只有将这些做好,就能更好地利用潮汐能来发电。

2.波浪能

波浪能集有许多优点,比如能量密度高、分布面广泛。特别是在能源消耗多的冬季,可以利用的波浪能能量也最大。它的能量如此巨大,一直都吸引着沿海的能工巧匠们。他们想尽各种办法,期望能够驾驭海浪开辟新天地。

波浪能发电

波浪能电站

具体而言,波浪能就是指海洋表面波浪所具有的动能和势能。海洋表面的海水受太阳辐射给予的热量,可以说它是世界最大的太阳能收集器。温暖的地表海水,造成与深海海水之间的温差,由于风吹过海洋时产生风波,这种风波在辽阔的海洋表面上,风能以自然储存于水中的方式进行能量转移,因此,说波浪能是太阳能的另一种浓缩形态,并不是没有道理的。

在所有海洋能源中,波浪能是最不稳定的一种能源。波浪能是由风把能量传递给海洋而产生的,它事实上是吸收了风能而形成的,它的能量传递速率与风速有一定关系,也和风与水相互作用的距离(即风区)有关。水团相对于海平面发生位移时,使波浪具有势能,而水质点的运动,则使波浪具有动能,从而使波浪能发挥出作用。

在风较多的沿海地带,波浪能的密度通常都很高。例如,英国沿海、美国西部沿海和新西兰南部沿海等都是风区,有着十分有利的波候。而我国的浙江、福建、广东和台湾沿海的波能也较为丰富,在工业经济发展上功不可没。

波浪能之所以能够发电是通过波浪能装置,将波浪能首先转换为机械能,再最终转换成电能。这一技术源自于20世纪80年代初,西方海洋大国利用新技术优势纷纷展开实验,但受客观条件和技术影响,所取得的效果效益有好有差。

3.海流能

简而言之,海流所存储的动能就是海流能。海流能的能量与流速的平方和流量成正比。与波浪能相比,海流能的变化要平稳且有规律得多。海流能有着很大的开发价值。

海流能的利用方式主要是发电。1973年,美国研制出一种名为“科里奥利斯”的巨型海流发电装置。该装置为管道式水轮发电机。机组长l10米,管道口直径170米,安装在海面下30米处。在海流流速为2.3米/秒条件下,该装置获得8.3万千瓦的功率。此外,日本、加拿大也在大力研究试验海流发电技术。到目前为止,我国的海流发电研究也已经有样机进入中间试验阶段,发展前景不可限量。

相比陆地上的江河,利用海流发电要方便得多,它既不受洪水的威胁,又不受干旱的影响,几乎以常年不变的水量和一定的流速流动,为人类提供了可靠的能源。

利用海流发电,除了上面所说的类似江河电站管道导流的水轮机外,还有类似风车桨叶或风速计那样机械原理的装置。一种海流发电站,有许多转轮成串地安装在两个固定的浮体之间,在海流冲击下呈半环状张开,看上去很像花环,因此被称为花环式海流发电站,它是目前海流发电站的主要形式。

4.海洋温差能

海洋是一个巨大的吸热体,仔细观察不难发现,地球上的海洋除了南北的极地和部分浅海外,通常不会结冰,尤其是赤道附近的海域,海水表面温度几乎是恒温的,因此在描述海洋时人们都说它是温暖的。海洋深处的海水温度却很低,它一年四季温度只有摄氏几度,无论如何,太阳也没有办法把它晒热,这与海洋上层的温水比较,大约有20℃的温差。在热力学上,凡有温度差异都可用来作功,这就是我们所要讲的海洋温差能。

大多数情况下,海洋温差是指南纬25°至北纬32°之间海域中海水深层与表层的温度差。我国位于东半球,拥有较好的海洋温差条件,尤其是台湾附近海水温差更大,能够使人们得以很好地利用。

海洋温差能的主要功能就是利用温差发电。海洋温差发电主要采用两种循环系统,一种是开式,一种是闭式。在开式循环中,表层温海水在闪蒸蒸发器中,由于闪蒸而产生蒸汽,蒸汽进入汽轮机做功后流入凝汽器,由来自海洋深层的冷海水将其冷却。在闭式循环中,来自海洋表层的温海水先在热交换器内将热量传给丙烷、氨等低沸点工质,使之蒸发,产生的蒸汽推动汽轮机做功后再由冷海水冷却。在这个循环的过程中,可以不断地将海水的温差变成电力,由此使发电成为实现。

4.海洋盐差能

所谓盐差能,就是指海水与淡水之间或两种含盐浓度不同的海水之间的化学电位差能。这种能量主要存在于河流与海洋的交接处。同时,淡水丰富地区的盐湖和地下盐矿也可以利用盐差能。盐差能是海洋能源中密度最大的一种可再生能源。海洋盐差能可以用来发电在很久以前已被人们认识到。

其发电原理主要是:当把两种浓度不同的盐溶液盛在一个容器中时,浓溶液中的盐类离子就会自发地向稀溶中扩散,一直到两者浓度达到一致。所以,盐差能发电,就是利用两种含盐浓度不同的海水化学电位差能,并将其转换为有效电能。有学者在经过详细的计算后发现在17℃时,如果有1摩尔盐类从浓溶液中扩散到稀溶液中去,就会释放出5500焦的能量来。由此专家设想到:只要有大量浓度不同的溶液可供混合,就一定会有巨大的能量释放出来。经过进一步计算还发现,如果利用海洋盐分的浓度差来发电,它的能量可排在海洋波浪发电能量之后,但又要大于海洋中的潮汐能和海流能。

利用盐差能发电有多种方式,比如有渗透压式、蒸汽压式和机械一化学式等,其中渗透压式方案获得了人们最大的重视。将一层半渗透膜放在不同盐度的两种海水之间,通过这个膜会产生一个压力梯度,迫使水从盐度低的一侧渗透到盐度高的一侧,从而稀释高盐度的水,直到膜两侧水的盐度变成一致。此压力称为渗透压,它与海水的盐浓度及温度有着很大的关联。

据估算,地球上存在的可利用的盐差能达26亿千瓦,其能量甚至比温差能还要大。由此可见,海洋中蕴藏着巨大的能量,只要海水不枯竭,其能量就生生不息。作为新型的能源,海洋能源已吸引了全世界越来越多人的兴趣。

10. 海洋吸收太阳辐射中的短波还是长波

长波辐射是地面和大气的辐射,地面和大气的辐射能主要集中在4~120μm之间,均为肉眼所不能看见的红外辐射。

短波辐射是波长短于3μm的电磁辐射。短波辐射作为太阳辐射的一个重要分支,在地表能量平衡中起着重要作用。

在长波辐射中,由地面向上发射的长波辐射称为地面辐射或地面射出辐射,大气发射的长波辐射称为大气辐射,大气向下发射的长波辐射称为大气逆辐射。

顶一下
(0)
0%
踩一下
(0)
0%