1. 海洋地区
北极地区的海洋大洲主要有北冰洋和格陵兰海。北冰洋是世界上最北的海洋,位于北极圈内,被冰川和浮冰覆盖,是北极地区最重要的海洋之一。格陵兰海位于格陵兰岛和加拿大北部之间,是北冰洋的一部分,也是北极地区的重要海洋之一。这两个海洋大洲在北极地区的气候和生态系统中起着重要的作用,对全球气候和海洋循环也有重要影响。
2. 海洋地区降水多吗
海上的蒸发量大下雨量也大,没有错。但由此判断说海上的对流也比陆地大,所以降雨量应该比陆地多。这个是错误的。对流是由热力差异造成的,而陆地的热力差异远远大于海洋,加上地形的影响,在陆地上空的空气对流远超海面。所以说“海上的对流也比陆地大”是不成立的。同理,说海上的阴雨天气较多也是不成立。
3. 海洋地区气压高还是低
高空由于空气密度降低,使得其对单位面积的压力减小
夏季海面的气压高,是因为海水的容纳热量能力很大,吸收同样的热量,海洋表层水温要比陆地地温要低,因此就使得海洋上空的气温低于大陆的气温(热传导作用,热量总是由高温物体传递给低温物体),前面说了,温度越低的空气,对单位面积地表的压力就越大,因此海面气压就会相对高些。
4. 海洋地区钢筋混凝土的寿命
这其实是混凝土的‘耐久性’问题。水泥没有使用前,储存期为三个月,因为储存时间长了,水泥可能吸湿,部分发生水化反应结块或降低活性,所以水泥有有效期。在水泥已经用于混凝土或砂浆,混凝土或砂浆硬化后,就不存在过期问题了,而是‘耐久性’问题。
只要混凝土或砂浆处于良好环境,即没有腐蚀、没有冻融、没有高温(100°C以上)等等对混凝土/砂浆的破坏因素存在,混凝土/砂浆的强度就不会降低,可以一直使用下去。这是混凝土/砂浆优于有机材料和金属材料的地方。由水泥凝结的混凝土/砂浆属于无机矿物材料,本身的稳定性很好。
但实际工程应用的混凝土/钢筋混凝土结构是处于自然环境中,必然会遭遇许多破坏因素,例如北方的桥梁、码头必然冬季会受冻,跨海大桥、沿海码头必然会受海水侵蚀(海水中氯能渗透进入混凝土导致钢筋锈蚀),有些地区土壤中含硫酸盐或有酸雨会腐蚀混凝土,等等。此外,混凝土还可能发生内部自身膨胀破坏,例如碱-骨料反应、延迟钙矾石生成,等等。如果对这些破坏因素没有采取措施防范,混凝土结构的寿命最短可能只有十几年,甚至几年。
所幸的是,目前混凝土技术可以有效提高混凝土抵抗外部因素的破坏和防止发生内部破坏。最新颁布的标准GB/T 50476-2008“混凝土结构耐久性设计规范”,就是针对混凝土结构所处环境和可能存在的破坏因素,进行结构和混凝土设计,保证混凝土结构使用寿命。根据工程的重要性,设计使用寿命不低于50年和100年。
针对环境存在的破坏因素,对现有混凝土结构进行养护、维修或加固,是延长结构使用寿命的重要手段。混凝土结构不安全了、功能不适应要求或维修加固费用太高,拆除重建就可能是最好的选择。
新建成的杭州湾大桥设计使用寿命为不低于100年。该桥处于海洋环境,最大的问题是氯导致钢筋锈蚀。保证100年寿命的措施包括:混凝土表面涂层和高性能混凝土,前者能保证15~20年氯不进入混凝土,后者保证氯在混凝土中渗透速率非常低,需要100年左右才能在钢筋表面达到引起锈蚀的浓度。南京长江大桥修建时还没有‘耐久性设计’的概念,因为其所处环境没有冻融、氯盐、硫酸盐等破坏因素存在,所以至今其混凝土结构仍然状态良好。然而,其梁为钢结构,必须不断地刷漆防锈,保养维护费用很高。这也是现代钢筋混凝土结构比钢结构用的更多的原因。
5. 海洋地区气候特点
海洋性气候,指海洋邻近区域的气候。如海岛或盛行风来自海洋的大陆部分地区的气候。由于海洋巨大水体作用所形成的气候 。包括海洋面或岛屿以及盛行气流来自海洋的大陆近海部分的气候。
海洋性气候是地球上最基本的气候型。总的特点是受大陆影响小,受海洋影响大。在海洋性气候条件下,气温的年、日变化都比较和缓,年较差和日较差都比大陆性气候小。春季气温低于秋季气温。全年最高、最低气温出现时间比大陆性气候的时间晚;最热月在8月,最冷月在2月。
热带海洋性气候景观
由于海洋巨大水体作用所形成的气候。包括海洋面或岛屿以及盛行气流来自海洋的大陆近海部分的气候。海洋气候有以下特点:
①气温年变化与日变化都很小,在洋面上甚至观测不到日变化。年变化的极值一般比大陆后延1个月,如最冷月为2月,最暖月为8月。在高纬地区最冷月还可能是3月,最暖月也可能到9月。秋季暖于春季。
②降水量的季节分配比较均匀,降水日数多,但强度小。云雾频数多,湿度高。
③在热带海洋多风暴,如北太平洋西南部分与中国南海是台风生成和影响强烈的地区。热带风暴(包括台风)是一种十分重要的气象灾害。
④多云雾天气,湿度大。多数临近海洋的大陆地区,都具有海洋性气候特征,西欧沿海地区是大陆上典型的海洋性气候区。
6. 海洋地区地壳厚度
答案,地壳深度多少米?
地球固体圈层的最外层,地壳厚度平均17千米,它在全球上的厚度和成分及不均匀,大陆地壳厚,平均厚度为3.3万米,青藏高原的地壳厚度达6.5万米,延迟中硅铝钾钠成分较多。海洋地壳薄,厚度只有5千到8千米,岩石中硅铝铁镁成分较多。
7. 海洋地区的降水特点
澳大利亚东侧十大分水岭山脉,所以海洋上的湿气不能进入,澳大利亚中部形成了维多利亚大沙漠,这当然也和副热带高压代有关 西部海岸地区是海洋性气候 比较湿润具体参考澳大利亚介于南纬10°45′~39°08′间,南北跨28°23′,是跨纬度最少的一个大陆,南北间温差小,气温分布比较简单。南回归线横贯大陆中部,99%的面积属于热带和亚热带,使全年气温都比较暖热,少雨区和沙漠的面积特别广。澳大利亚大陆轮廓比较完整,增加了内陆离海的距离,最大达1,500公里以上,影响了海洋气流之深入内陆。另外整个轮廓又是东西长、南北窄,扩大了东南信风带控制的面积,内陆又无广大河湖等水面调节,使大部地区更加干热。在地形上,广大的中西部地区较低平,起伏不大,气旋回转少,天气稳定,很难致雨,使广大的中西部气候差异变小。另外,东部高大的山地南北长4,500公里、高1,000多米,东坡陡西坡缓,又紧逼东海岸,阻挡了东南信风从东面太平洋上带来的暖湿气流,使东坡多雨、西坡干旱少雨,缩小了东部多雨区的面积,扩大了西部内陆干旱区的范围。中部平原纵贯南北有利于南北气流之运行,使中部内陆盆地并不是滴雨不下的沙漠之地。澳大利亚周围的洋流,在大陆北部沿岸为北澳暖流,东部为东澳大利亚暖流,影响大陆北部和东部沿岸增温增湿成为多雨区。南部沿海为西风漂流,西部沿海为西澳大利亚寒流,影响了澳大利亚南部沿岸的少雨和西部沙漠的形成。从大气环流来看,澳大利亚大陆夏季气压带南移,大陆北部为热低压中心,南回归高压带位于大陆南部,故北部吹西北季风,炎热而多雨;大陆中部和南部都吹东南信风,炎热而干旱;只有大陆东部山地东坡为迎风坡,有较多的降水。冬季气压带北移,与陆上冷高压相结合,高压中心位于大陆北部内陆,大陆上大部分地区为高气压所笼罩,风从高压中心向外吹,所以干燥少雨,只有大陆西南角和东南角吹海上来的西风,多气旋,天气湿润多雨。东部山地东坡仍为迎风坡,有较多降水。塔斯马尼亚岛因位于南纬40°以南,终年吹西风,属温带海洋性气候。所以,从年降水量的分布来看,就成了北、东、南三面多雨,向内陆和西部逐渐减少的图式。降水规律(澳大利亚东侧十大分水岭山脉,所以海洋上的湿气不能进入,澳大利亚中部形成了维多利亚大沙漠,这当然也和副热带高压代有关
8. 海洋地区和陆地地区哪里气压高
陆地和海洋的热力性质不同,对大气的影响不同;陆地的比热容小于海洋,所以陆地气温的日较差和年较差大;海洋气温的日较差和年较差小,对应出现大陆性气候和海洋性气候。
温带海洋性气候终年温和湿润, 受盛行西风带控制,位于南北纬40 至60 度间的大陆西岸 大陆性气候最显著的特征,是气温 年较差或气温日较差很大。
在气温 的年变化中,最暖月和最冷月分别 出现在 变化中,最高温度出现的时间较早,通常在 13~14 时;最低气温一般出 现在拂晓前后。
大陆性气候的另一 重要特征是降水量少,且降水季节 和地区分布不均匀。大陆性气候影 响下的地区,一般为干旱和半干旱地 区,降水量一般不到400 毫米,甚至 在50 毫米以下。
陆地是人类生产生活的主要场所,通过生和生活活动,向大气中排放诸如温室气体,影响大气的物质组成,破坏大气结构,进而影响大气性质;大气变得更加不稳定,极端的天气频繁出现,直接危害到人类的生存。由于海洋巨大水体作用所形成的气候。包括海洋面或岛屿以及盛行气流来自海洋的大陆近海部分的气候。海洋气候有以下特点:
①气温年变化与日变化都很小,在洋面上甚至观测不到日变化。年变化的极值一般比大陆后延1个月,如最冷月为2月,最暖月为8月。
在高纬地区最冷月还可能是3月,最暖月也可能到9月。秋季暖于春季。
②降水量的季节分配比较均匀,降水日数多,但强度小。多云雾天气,湿度高。
③在热带海洋多风暴,如北太平洋西南部分与中国南海是台风生成和影响强烈的地区。
热带风暴是一种十分重要的气象灾害。
多数临近海洋的大陆地区,都具有海洋性气候特征,西欧沿海地区是大陆上典型的海洋性气候区。
9. 澳大利亚是什么海洋地区
澳大利亚都住在海边的原因如下。澳大利亚东海岸为温带海洋性气候,降水较多,温度十分适宜人类生存。东海岸分布着悉尼,坎培拉等主要的城市。集中了澳大利亚90%以上的人口。澳大利亚的内陆地区气候干旱,降雨稀少,生存环境十分恶劣。非常不适合人类生存。
- 相关评论
- 我要评论
-