1. 海洋垂直结构
01
海底主要地貌类型
l 从大陆边缘到大洋中心,海底地形依次为大陆架、大陆坡、洋盆和洋中脊
l 大陆架:分布在大陆边缘的浅海地区。
l 大陆坡:分布在大陆架的外缘。洋盆、海沟、海岭分布在大洋底。
02
海底扩张学说、板块构造学说的主要观点
l 海底扩张学说认为:大洋底部地壳是不断生成——扩张——消亡的过程,是地幔中物质对流的结果。洋中脊是地壳的诞生处,新洋壳不断生长,随着地幔物质的对流向两侧推开,海底不断扩张形成洋盆。
l 板块构造学说认为:地球岩石圈是由板块构成的,形成六大板块。板块内部相对稳定,很少发生变形,板块边界则是全球最活跃的构造带。
l 大陆板块与大洋板块在交接处碰撞,大洋板块因密度大,位置较低,向大陆板块俯冲至地幔,洋壳在高温作用下融为岩浆。
l 板块的俯冲带动洋底下倾,陷落,形成了地球表面最洼的地方——海沟。如太平洋西部的马里亚纳海沟
l 大陆板块受挤上拱,隆起形成岛弧或海岸山脉。如亚洲东部的库页岛、日本群岛、台湾岛、菲律宾群岛等
l 在陆地上会形成海岸山脉,如北美洲西海岸的落基山脉、南美洲西海岸的安第斯山脉。如果是大陆板块与大陆板块相碰撞,都比较坚硬,则形成高大的山脉。如喜马拉雅山脉就是亚欧板块与印度洋板块相碰撞产生的。
03
海底地形的形成和分布规律
l 板块在进行碰撞挤压,板块边界处于消亡状态。如果是大洋板块与大陆板块相撞挤压,一软一硬,在海上就会形成深海沟,;在海陆交界处会形成岛弧或弧形列岛,;
04
海底地形的形成和分布规律
l 板块在进行碰撞挤压,板块边界处于消亡状态。如果是大洋板块与大陆板块相撞挤压,一软一硬,在海上就会形成深海沟,;在海陆交界处会形成岛弧或弧形列岛,;
05
不同海区海水温度随水深的变化规律
l 海洋在垂直方向上,由于太阳辐射首先到达海水表面,海水导热率又很低,海水的温度随深度增加而递减,只是在表层海水以下,海水温度随水深变化不大,特别是1000米以下的水温变化很小,经常保持着低温状态。
06
海洋表层盐度的分布规律
l 盐度按纬度呈“马鞍形”分布的规律,即赤道附近低,南北回归线附近最高,中纬度海区又随纬度的增高而降低,到高纬度海区最低。概括地说,亦即从南北半球的副热带海区分别向两侧的高纬度和低纬度递减。
07
海气的相互作用及其对全球水、热平衡的影响
海-气间的水分交换过程:海洋通过蒸发作用,向大气提供水汽。大气中约86%的水汽是由海洋提供的,因此,海洋是大气中水汽的最主要来源。大气中的水汽在适当条件下凝结,并以降水的形式返回海洋,从而实现与海洋的水份交换。海洋的蒸发量与海水温度密切相关,一般来说,海水温度越高,蒸发量越大。因此,低纬度海区和有暖流流经的海区,海面蒸发旺盛,空气湿度大,降水也较丰富,海—所间的水分交换也较为活跃。
海-气间的热量交换过程:海洋吸收了到达地表太阳辐射的大部分,并把其中85%的热量储存在海洋表层。海洋再通过潜热、长波辐射等方式储存的太阳辐射能输送给大气。可以说,海洋是大气最主要的热量储存库。海洋向大气输送的热量受海洋表面水温的影响,水温高的海区,向大气输送的热量多。
与陆地相比,海洋增温慢,冷却也慢,从而调节着大气温度的变化。一方面,海洋的气温变化有滞后效应。例如,海洋对太阳辐射季节变化的影响要比陆地晚一个月左右。另一方面,海洋使大气的温度变化比较和缓。海洋影响较大的地区,气温的日较差和年较差都较小。生活在沿海地区的人们,可以明显地感受到海洋对大气温度的调节作用。
海—气通过长期的相互作用,并在地转偏向力的作用下,形成了运动方向基本一致的大气环流和大洋环流。大气环流和大洋环流驱使着水分和热量在不同地区的传输,从而维持地球上水分和热量的平衡。
08
厄尔泥诺、拉尼娜现象及其对全球气候的影响
南美西海岸(秘鲁和厄瓜多尔附近)延伸至赤道太平洋向西至日界线附近的海面温度异常增暖的现象。
厄尔尼诺的发生机制正好相反,当赤道太平洋信风持续加强时,赤道东太平洋表面暖水被吹走,深层的冷水上翻作为补充,海表温度进一步变冷,从而形成拉尼娜。拉尼娜常与厄尔尼诺交替出现,但其发生频率要低于厄尔尼诺。例如,80年代以来仅发生了3次拉尼娜,是厄尔尼诺发生频率的一半。
厄尔尼诺对气候的影响,以环赤道太平洋地区最为显著。在厄尔尼诺年,印度尼西亚、澳大利亚、南亚次大陆和巴西东北部均出现干旱,而从赤道中太平洋岛南美西岸则多雨。许多观测事实还表明,厄尔尼诺事件通过海气作用的遥相关,还对相当远的地区,甚至对北半球中高纬度的环流变化也有一定影响。
厄尔尼诺和拉尼娜是赤道中、东太平洋海温冷暖交替变化的异常表现,这种海温的冷暖变化过程构成一种循环,在厄尔尼诺之后接着发生拉尼娜并非稀罕之事。同样拉尼娜后也会接着发生厄尔尼诺。但从1950年以来的记录来看,厄尔尼诺发生频率要高于拉尼娜。
09
波浪、潮汐、洋流等海水运动形式的主要成因及其作用
l 海水的波浪运动,就能量来源和产生原因来说,有其能量来自风能形成的风浪,有其能量来自地震和火山爆发释放出的地球内能或热带风暴引发的海啸,也有其能量来自天体引力使海水涨落形成的潮汐波。然而,最常见的一种波浪是风浪。在风力作用下,海面波状起伏,随着风速越大,波浪的规模越大,破坏力也越大,对沿海建筑、航运、渔业、海洋石油生产等有不利的影响。遇有巨大的风浪袭击时,应采取加固海堤、封航、休渔、抛锚等措施。
l 由月亮和太阳的引力驱动,以及地─月─日系统转动和地球自转的影响,海水呈现周期性的上下波动,这种波动称作潮汐。潮汐对航海等海上活动以及近岸生态有着直接影响。
2. 海洋的垂直结构
在垂直方向上大多数群落具有明显的分层现象。在陆地上,由于各种生物对光照的利用的不同。出现了不同的植物种群。这种垂直结构显著提高了群落利用阳光等环境资源的能力。
穷乐中植物的垂直结构用为动物创造了多种多样的栖息空间和食物条件,所以植物也有了分层现象。
在海洋当中,由于光线穿透力的不同。导致不同的植物有了分层现象。导致不同的植物有了分层现象。
另外,由于水城的不同,溶氧量不同,导致动物也有了分层现象。
3. 海洋垂直结构举例
浅水区和深水区的构成取决于海洋或湖泊的形状和大小,通常情况下,浅水区和深水区的构成是水平结构。
例如,在太平洋的一个大型海洋湖,其浅水区与深水区之间有一道堤坝,这就会形成一个水平结构。在大西洋或地中海的一个大型海洋湖,浅水区和深水区之间可能没有边界,这取决于地形和湖的形状,因此构成可能是垂直或水平结构。
浅水区和深水区的构成取决于海洋或湖泊的形状和大小,可以是水平或垂直结构。
4. 海洋垂直结构示意图
c海洋的垂直分层 大洋区的水层可垂直划分为若干带。
①上层带,下限为浮游植物的补偿深度,即光合作用产生的氧恰与呼吸作用消耗的氧相等的深度,其具体数值取决于光强和水的透明度,一般10~120米,平均约为50米。
②中层带,起于上层带的下限,下至200~300米深处。
③次中层带,水深可达600~700米。
④半深带,水深由600~700米至2000~2500米,几乎无光。
⑤深层带,水深2500~6000米,无光。
⑥深渊带,水深在6000米以下,无光。
5. 海洋垂直结构名词解释
垂直物种是相同物种,
垂直结构是群落在空间中的垂直分化或成层现象。群落中的植物各有其生长型,而其生态幅度和适应性又各有不同,它们各自占据着一定的空间,它们的同化器官和吸收器官处于地上的不同高度和地下的不同深度,或水面下的不同深度。它们的这种空间上的垂直配置,形成了群落的层次结构或垂直结构。群落的垂直结构具有深刻的生态学意义和实践意义。群落的垂直结构是群落重要的形态特征,在这个意义上又可称为形态结构(morphologicalstructure)
6. 海洋垂直结构的影响因素
1、纬度——通过纬度影响温度,进而影响植被。这是植被的纬度地带性。
2、海陆分布——离海洋的远近决定了当地的水汽多少,进而影响降水的多少。由于海陆位置通常使得植物在地图上呈纵向分布,因此这叫做经度地带性。
3、海拔高度——海拔每上升100米降温0.6摄氏度,使植被随山地海拔的增高而出现垂直方向上的变化,这被称为垂直地带性。
主要就是以上三种地带差异。其余的影响都是次要的了。
7. 海洋是垂直结构还是水平结构
海洋很大,约占整个地球表面的71%,海洋的平均深度约3800米,而人类只达到过5%海域的底部。可以说,绝大部分的海底,人类是全然不知的。
世界上最深的地方处于太平洋板块和菲律宾板块交界处的马里亚纳海沟,最深处是海平面以下11034米,装下整个珠穆朗玛峰也是绰绰有余。而没有任何生物可以在这样的海底生活,因为极强的水压足以压碎任何海洋动物。生物的生存极限也仅有8000多米。曾经下潜过到该深度的《阿凡达》导演卡梅隆说,这里没有什么生命,显得格外的荒凉,仿佛来到了另一个星球
8. 海洋垂直剖面图
我国新一代远洋综合科考船“科学”号,29日圆满完成中国科学院战略性先导专项“热带西太平洋海洋物质能量交换及其影响”2017年南海综合考察航次任务,抵达深圳补给。本航次中,我国首次实现了缆控式和自治式水下机器人深海交汇拍摄,不同类型装备协同作业,同时对南海一冷泉区进行了精细调查,取得了大量生物样品。
亮点一:水下机器人深海“约会”
在1000多米深的黑暗海底,一个根据预编程自主航行的机器人穿梭而过,能用另外一个机器人在海底准确找到它并跟踪拍摄吗?我国科学家在本航次做到了!
7月26日,“科学”号搭载的缆控式遥控无人潜水器“发现”号与自治式水下机器人“探索”号在南海北部实现深海交汇拍摄,这也是我国首次实现上述两类水下机器人交汇拍摄。
航次技术首席、中国科学院沈阳自动化研究所副所长李硕说,虽然看上去是一次简单拍摄,但里面蕴含了非常复杂的技术体系,非常令人兴奋。
李硕介绍,“探索”号是自治式水下机器人,下水后根据预编程自主航行。在本潜次中,它保持距海底5米进行光学拍照。要实现这两类水下机器人交汇拍摄,“探索”号稳定性和可靠性要非常高,航行位置和姿态控制要非常精准,导航定位能力要非常强,这样才能克服海底洋流和复杂地形影响,按照预设路径和时间出现在预定位置。
航次首席科学家孙松说,要实现交汇拍摄,还需要母船和遥控无人潜水器“发现”号的精准配合。由于“发现”号和母船之间有一根缆相连,因此母船要有非常精准的动力定位能力,同时“发现”号要具备精准导航定位能力,准时准确出现在相应位置,捕捉并跟踪拍摄“探索”号。
“两种不同类型的水下机器人和母船由三个不同团队操控,这次交汇拍摄体现了三个团队高水平的操控能力,以及相互之间的配合能力。”李硕说。
亮点二:不同类型探测装备协同“作战”
航次第二航段开始后,科考队员率先将“探索”号自治式水下机器人布放到海水中,它随即开始进行大范围地形扫描和拍照。
基于“探索”号探测资料,科考队员选择了最想要调查的区域,连夜将“发现”号遥控无人潜水器布放到水中。
在“发现”号即将结束作业时,科考队员又将深海着陆器布放到海底。“发现”号准确找到着陆器位置,将其移动到科学家最想观测位置。深海着陆器将拍摄冷泉区生物三个月的生活习性和变化。
这只是“科学”号搭载的系列海洋探测装备协同作业一个缩影。本航次中,还实现了高通量深海海水采集及分级过滤系统、海洋生物光学剖面测量系统和船舶自身海洋探测装备的协同作业。科考队员在本航次还布放了12台水下滑翔机,开展组网同步观测,可测得流体温度、盐度、浊度、含氧量、海流强度和运动方向等数据和资料。
孙松说,此次利用“科学”号搭载我国自主研发系列海洋探测装备开展协同作业,提高的不仅是科考效率,更重要的是有利于解决海洋中的重大科学问题。
亮点三:探秘南海冷泉“海怪”
我们都知道万物生长靠太阳,但在深海的冷泉区,这里漆黑、高压,到处都是甲烷等化学物质,但却有非常繁茂的生物生存,这让科学家非常感兴趣。
冷泉是指来自海底沉积界面之下,含有硫化氢、甲烷及其他富碳氢化合物的流体的渗漏活动,这些流体与海底温度相近。1983年美国科学家查理斯首次在墨西哥湾佛罗里达陡崖发现冷泉,之后世界范围内不断涌现有关冷泉的报道,现已在全球大陆边缘海底发现上千个活动冷泉。
在本航次中,“发现”号遥控无人潜水器在南海一冷泉区采集到了100多只白色的潜铠虾、棕色的贻贝和少量阿尔文虾等,有些生物到船上还活着,这让科学家非常兴奋。
中国科学院海洋研究所副研究员蒋维说,冷泉区生物和常见的近海生物有很大区别,它们生活在海底,没有光,所以眼睛都退化了。同时,它们身上或者体内都附着了很多微生物,它们就依靠食用这些微生物而生存,而这些微生物是依靠甲烷等化能而生存。
“我们将用这些生物样品开展极端环境下生物进化与演变、生物多样性、基因测序,以及冷泉生物与地质环境的关系等方面的研究。”蒋维说。