返回首页

海洋内部碳循环系统(海洋生态系统碳循环)

来源:www.shuishangwuliu.com   时间:2023-07-19 13:46   点击:232  编辑:jing 手机版

1. 海洋生态系统碳循环

参与

碳循环,是指碳元素在自然界的循环状态,生物圈中的碳循环主要表现在绿色植物从空气中吸收二氧化碳,经光合作用转化为葡萄糖,并放出氧气(O2),有机体再利用葡萄糖合成其他有机化合物。有机化合物经食物链传递,又成为动物和细菌等其他生物体的一部分。生物体内的碳水化合物一部分作为有机体代谢的能源经呼吸作用被氧化为二氧化碳和水,并释放出其中储存的能量。

碳循环过程,大气中的二氧化碳大约20年可完全更新一次。自然界中绝大多数的碳储存于地壳岩石中,岩石中的碳因自然和人为的各种化学作用分解后进入大气和海洋,同时死亡生物体以及其他各种含碳物质又不停地以沉积物的形式返回地壳中,由此构成了全球碳循环的一部分。碳的地球生物化学循环控制了碳在地表或近地表的沉积物和大气、生物圈及海洋之间的迁移。

2. 海洋生态系统碳汇

碳汇(tàn huì ):森林吸收并储存二氧化碳的多少或者说是森林吸收并储存二氧化碳的能力。

碳汇分别有以下几种:

1、森林碳汇:是指森林植物通过光合作用将大气中的二氧化碳吸收并固定在植被与土壤当中,从而减少大气中二氧化碳浓度的过程。林业碳汇是指利用森林的储碳功能,通过植树造林、加强森林经营管理、减少书林、加强森林经营管理、减少毁林、保护和恢复森林植被等活动,吸收和固定大气中的二氧化碳,并按照相关规则与碳汇交易相结合的过程、活动或机制。

2、草地碳汇:国内仍没有学者对草地碳汇进行界定,因为大多学者认为草地的固碳具有非持久性,很容易泄漏。尽管草地固碳容易泄露,但是随着我国退耕还林、还草工程的实施,草地土壤的固碳量在增加,因此从增量角度看草地还是起到了固碳的作用。

3、耕地碳汇:耕地固碳仅涉及农作物秸秆还田固碳部分,原因在于耕地生产的粮食每年都被消耗了,其中固定的二氧化碳又被排放到大气中,秸秆的一部分在农村被燃烧了,只有作为农业有机肥的部分将二氧化碳固定到了耕地的土壤中。

4、海洋碳汇:是将海洋作为一个特定载体吸收大气中的二氧化碳, 并将其固化的过程和机制。地球上超过一半的生物碳和绿色碳是由海洋生物(浮游生物、细菌、海草、盐沼植物和红树林)捕获的,单位海域中生物固碳量是森林的10倍,是草原的290倍。

3. 海洋生态系统物质循环

海洋生态系统服务功能分为供给功能、调节功能、文化功能和支持功能四大类。

供给功能是指海洋生态系统为人类提供食品、原材料、提供基因资源等产品,从而满足和维持人类物质需要的功能,主要包括食品生产、原料生产、提供基因资源等功能。

调节功能是指人类从海洋生态系统的调节过程中获得的服务功能和效益,主要包括气体调节、气候调节、废弃物处理、生物控制、干扰调节等功能。

文化功能是指人们通过精神感受、知识获取、主观印象、消遣娱乐和美学体验等方式从海洋生态系统中获得的非物质利益,主要包括休闲娱乐、文化价值和科研价值等功能。

支持功能是保证海洋生态系统物质功能、调节功能和支持功能的提供所必需的基础功能,具体包括营养物质循环、物种多样性维持和提供初级生产的功能。

4. 海洋在碳循环中的作用

海洋循环主要指海洋中的物质和热量的循环流动,其主要形态可分为海上内循环和海陆间循环。海上内循环指海洋面上的水蒸发成水汽,进入大气后在海洋上空凝结,形成降水又回到海洋的局部水分交换过程。海陆间循环则包括海洋表面的水经过蒸发变成水汽,水汽上升到空中随气流运行,被输送到大陆上空,其中一部分在适当条件下凝结,形成降水。降落到地面的水,一部分沿地面流动,形成地表径流;一部分渗入地下形成地下径流。二者经过江河汇集,最后又回到海洋。

5. 海洋中的碳循环

海洋中氧平衡 海洋生态系统在全球碳循环中发挥着重要作用,能有效地缓解CO2浓度的增加。

海洋持有的碳比大气多50倍,其中大部分是以碳酸盐(CO22-)和碳酸氢盐(HCO-2)离子的形式存在。海洋吸收CO2的能力大致相当于通常所估计的矿物燃料的贮藏量。虽然海洋对大气CO2的缓解作用主要取决于海洋的混合程度和酸碱度,但海洋浮游植物的潜在作用不可忽视。在海洋表层,浮游植物通过光合作用将海水中溶解的无机碳转化为有机碳,水中CO2分压降低;在其初级生产过程中,还需从海水中吸收溶解的无机盐,如硝酸盐和磷酸盐,这使得表层水的碱度升高,也将降低水中的CO2分压。这两个过程造成空气――海洋交界面两侧的CO2分压差,促进大气CO2向海水的扩散。同时,由于向海底沉降的有机颗粒携带的营养盐分解成无机盐的速率非常缓慢,使得表面水的碳含量比深度超过1000米处海水中的碳含量低10%。海洋表层的这一生物动力学过程,也被称之为“生物学泵”。海洋生物光合作用形成的有机碳沉积到海底,它们分解返回大气速度很慢。这一点与陆地生物圈显然存在很大差异。因为陆地生物圈的碳汇比较容易释放出来,如大面积森林砍伐、土地利用等。估计海洋生物光合作用利用的总碳量约为3×1010-4×1010 t/a。这个值代表海洋光合作用的总碳汇,其对大气CO2的净汇还取决于有机碳分解的返回能量。

6. 海水中的碳循环

深海环流=温盐环流.

温盐环流(英文:thermohaline circulation、缩写:THC),又称「输送洋流」、「深海环流」等,是一个依靠海水的温度和含盐密度驱动的全球洋流循环系统。这个系统的运作现况是,以风力驱动的海面水流如墨西哥湾暖流等将赤道的暖流带往北大西洋,暖流在高纬度处被冷却后下沈到海底,这些高密度的水接着流入洋盆南下前往其他的暖洋位加热循环,一次温盐循环耗时大约1600年,在这个过程中洋流运输的不单是能量(温度 / 热能),当中还包括地球固态及气体资源等,不过温盐环流最受人类关注的是其全球恒温的功能。温盐环流推测主要是由於北大西洋及南冰洋之间的盐分及温差对流而触发的。

概观

深海中的洋流主要是依仗密度的差额来驱动,并且潮汐现象引发的洋流运动亦会对深海洋流带来显着的影响。至於表面的洋流带会因为密度的差异而与其他的水域划清界线。暖流会膨胀致使密度下降,高浓度的盐则会填补水分子间的空隙导致密度上升,低密度的水会浮在高密度的上方。当高密度的水先形成,分层形态并不稳定的,为了均衡其密度分布,不同密度的水会相互产生对流,提供了深海洋流的动能。

深层水的形成

高密度的水几乎都集中在北大西洋及南冰洋下沈至海底深处的洋盆,在这些极地的洋域,表面洋带的水都会因为寒风吹袭而冷却,这些风不单带动表面洋带移动,所引起的乾湿温差还会构成大规模的海水蒸发,加速水温下降,这个现象被称为蒸发冷却,类似人体在湿热的环境下排汗降温的原理。由於被蒸发走的是纯水的分子,海水中的盐度会相对地上升。另海洋上冰的构成亦对海盐的浓度带来不可忽视的影响,由於纯水的凝固点是摄氏0度,比盐水的零下1.8度要高,因此纯水往往会比咸水优先结冰,增加了的盐度减弱了海水凝固的速度,如此寒冷的浓盐水会被包含在海冰的蜂巢状之结构中,当中的浓盐水逐渐地反过来熔解覆盖着它的冰层,最后将一部分冰块从母冰块分裂出并下沈,这个过程叫做海水排斥。水温和盐度这两大因素加起来导致海水的密度增大。

深层水的动态

挪威海是这个系统主要进行蒸发冷却及洋带下沈的场地,在此处下沈的水被称为「北大西洋深层水」(North Atlantic Deep Water,英文缩写:NADW)。NADW充满着洋盆并沿着连接格林兰岛、冰岛及大不列颠海底岩床的裂隙溢流向南方。接着极缓慢地流入大西洋深海平原,继续向南方推进。绕过南非后寒流带会一分为二,一部分的水会前往印度洋在该处涌升将寒流带到,另外一部分部分经历最长的一个周期的洋流最终会抵达北太平洋,受到浅而狭窄的白令海峡阻塞然后因为受热上涌变回暖流继而循环。

「南极底层水」(Antarctic Bottom Water,英文缩写:AABW)在威德尔海以冰块的海水排斥作用下沈并流向北方的大西洋洋盆,由於其密度比NADW更高所以AABW实际上潜流在NADW之下。它原本向西太平洋的旅程在德雷克海峡受阻继而沿着南美洲东岸的圭亚那洋盆向大西洋赤道进发。

7. 海洋碳循环过程

1、自然界碳循环:大气中的二氧化碳(CO2)被陆地和海洋中的植物吸收,然后通过生物或地质过程以及人类活动,又以二氧化碳的形式返回大气中.

2、有机体和大气之间的碳循环:绿色植物从空气中获得二氧化碳,经过光合作用转化为葡萄糖,再综合成为植物体的碳化合物,经过食物链的传递,成为动物体的碳化合物.植物和动物的呼吸作用把摄入体内的一部分碳转化为二氧化碳释放入大气,另一部分则构成生物的机体或在机体内贮存.动、植物死后,残体中的碳,通过微生物的分解作用也成为二氧化碳而最终排入大气.大气中的二氧化碳这样循环一次约需20年.一部分(约千分之一)动、植物残体在被分解之前即被沉积物所掩埋而成为有机沉积物.这些沉积物经过悠长的年代,在热能和压力作用下转变成矿物燃料──煤、石油和天然气等.当它们在风化过程中或作为燃料燃烧时,其中的碳氧化成为二氧化碳排入大气.人类消耗大量矿物燃料对碳循环发生重大影响.

8. 海洋微生物如何参与碳循环

碳循环在环境中的作用 摘 要:人们可能都喜欢钻石,也都曾使用过铅笔来写字。但我们可能很难相信那种坚固无比的钻石,或者是那漆黑的铅棒与所有生物体内都存在的碳是同一种物质。是的,碳在我们的地球上是无处不在的。它能以各种形态存在,并在海洋、大陆、与大气中不停地循环。构成了我们生存的基本条件之一—— 碳循环。

地球在浩瀚的历史长河中,不断地有生物从中演化而出,同时,也有生物在消亡。灭亡的生物经过了微生物的作用,被分解为有机物,以另一种形式重新进入到了环境之中。

而这就是碳元素在生物与环境之间的一种循环方式。在地球上,一切的生命形式都会根据其周围的空气、水、土壤和火这四个基本要素做出微妙的调整;即根据这些要素的组成,相互间的影响和相互间的转化进行一定的调整;

事实上,这些调整也恰恰说明了在我们所追溯的几亿年的历史中,生物链从未间断过,相应的碳循环自然也不会中断。在了解碳循环在生态系统中作用形式时我们先要知道什么是生物圈,什么是生态系统。 自然界是生物与生物、生物与环境之间相互作用、相互依存所形成的统一体,这种统一体成为生态系统。 在生态系统中,由食物关系把多种生物连接起来

9. 海洋生态系统的碳循环

珊瑚礁是生产力水平最高,同时也是最脆弱的海洋生态系统之一。由气候变化及人类活动导致的珊瑚礁全球衰退,已经影响到珊瑚礁的钙化和碳循环过程,也加大了长期悬而未决的珊瑚礁二氧化碳“源-汇”争议。尽管珊瑚礁的钙化过程伴随 CO2 释放,但考虑到珊瑚礁生态系统内部复杂的生物地球化学过程,以及造礁珊瑚特殊的混合营养特性,其作为碳汇功能的属性也不容忽视。

珊瑚礁是生物多样性最高的海洋生态系统,在全球尺度上预计每年可固定 9 亿吨碳。海洋中来自珊瑚礁的初级生产力高达 300—5 000 g C·m-2·a-1,而非珊瑚礁系统只贡献 50—600 g C·m-2·a-1。虽然珊瑚礁潜在的碳汇功能早已被发现,但由于其钙化过程伴随 CO2 释放,珊瑚礁在很长时间一直被定义为碳源属性。

目前,珊瑚礁的碳源/碳汇属性仍然存在争议,还没有被纳入以滨海湿地生态系统(如红树林、盐沼、海草床等)为代表的海岸带蓝碳收支中。因此,厘清珊瑚礁生态系统的“源-汇”机制、探索将珊瑚礁由碳源向碳汇转变的生态调控方式和途径,是当前最为紧迫的珊瑚礁生态修复之举,也是服务好国家碳中和目标与绿色发展战略的应有之义。

10. 海洋生态系统碳循环过程

碳循环发生在地球上的各种生物和环境之间。这个循环是生物群落和生态系统存在的一个重要部分,它决定了碳的净流动和生物和其他组分在空气、水和土壤之间的相互作用。碳循环中包含的比例因环境而异,但总体而言,碳是在植物、海洋生物、细菌和土壤中循环的。

顶一下
(0)
0%
踩一下
(0)
0%