返回首页

海洋光学用到的仪器有(海洋光学发展现状)

来源:www.shuishangwuliu.com   时间:2023-07-13 22:39   点击:135  编辑:jing 手机版

1. 海洋光学发展现状

海底捞金海变成银海一般是指在光线昏暗的夜晚,海面反射月光或星光的景象。这种现象主要是由于月亮或星星的光线被海面反射,形成一条发亮的银色带状景观,因此被称为银海。银海的变化是由多种因素共同影响的,包括天气、海洋的光学特性、水质等。例如,月亮的位置、云层的遮挡、海水的浑浊程度都可能会影响银海的形成。此外,银海也可能是由于大量的浮游生物在海面活动,使得海面出现闪烁的银色光芒。这种现象在一些有丰富浮游生物资源的海域特别常见。总的来说,银海是一种美丽而神秘的景象,常常给人带来宁静和浪漫的感觉。

2. 海洋光学技术

NDC红外ISP光学海洋光学Labsphere还有一些其他的设备器材商也涉及光学NI什么的

3. 海洋光学发展现状论文

光学零件,又称光来学元件。光学系自统的基本组成单元。大部分光学零件起成像的作用,如透镜、棱镜、反射镜等。另外还有一些在光学系统中起特殊作用(如分光、传像、滤波等)的零件,如分划板、滤光片、光栅用以光学纤维件等。

  全息透镜、梯度折射率透镜、二元光学元件等,是一二十年来出现的新型光学零件。 扩展资料:应用光学由于光学由许多与物理学紧密联系的分支学科组成,具有广泛的应用,所以还有一系列应用背景较强的分支学科也属于光学范围。

  如有关电磁辐射物理量测量的光度学和辐射度学;以正常平均人眼为接收器研究电磁辐射所引起的彩色视觉及其心理物理量的测量的色度学;以及众多的技术光学诸如光学系统设计及光学仪器理论,光学制造和光学测试及干涉量度学、薄膜光学、纤维光学和集成光学等。

    还有与其他学科交叉的分支,如天文光学、海洋光学、遥感光学、大气光学、生理光学及兵器光学等。

4. 海洋光学发展前景

一、工程光学的应用性,体现在光学自身的发展以及与其他学科的交叉与结合上。

这些交叉与结合使光学得以发展并形成众多各具特色的光学分支学科及其器件、材料如,成像光学、传输光学、矩阵光学、激光物理学、信息光学、统计光学、傅里叶光学、二元光学、非线性光学、晶体光学、偏振光学、薄膜光学、波导光学、集成光学、光纤光学、变折射率光学,自适应光学、近场光学、红外光学、光子学、原子光学、原子和分子光谱学,激光光谱学、辐射度和光度学、色度学,以及计量光学、视觉光学、摄影光学生物医学光学、大气光学、海洋光学等,还有光学工艺学、光源、光学材料和发光、光敏材料,光学元器件、光探测器、光调制器以及各种光学仪器等。

二、工程光学的应用性,还体现在光学技术与电子、半导体、计算机技术等其他相关技术的交融上。

由新的光学分支学科又形成了许多应用技术,例如,由傅里叶光学到光学信息处理技术、光全息技术,由激光物理学、量子光学到激光技术、激光光谱技术、激光加工技术、光放大技术、激光武器技术,由波导光学、集成光学、光纤光学到光通信技术、光纤传感技术、光集成技术,由光子学、非线性光学、集成光学到光电子技术、光存储技术/光盘技术、光计算技术、光显示技术、光探测技术、光调制与解调技术、光外差技术光学计量与测量技术、光学制导技术、光化学技术、光照明技术、摄像技术与投影技术、高速摄影技术、光学显微技术等。

三、工程光学的应用性,尤其体现在为实际应用而制造出的各种光学仪器上,并提供了许多方法及手段。

随着光学的不断发展,光学仪器的种类繁多,其性能与功能、生产与工艺也了很大的提高。光学仪器既包括为光学自身的了解与测量而设计的各种仪器,也包括为各个领域的观察与测量、传感和监控等实际应用而研制的许多仪器。光学仪器由早期用光学元件组合而成的装置,已逐步变成由光学、机械、电子和计算机技术综合而成的新一代精密智能化仪器。光学仪器是精密仪器中十分重要的一大类,它将为人们提供观察、识别、传感、测量、显示、控制、检验等极其重要和关键的手段。光电仪器产品是电器产品中最有前景的一类,它将在生产建设、科学研究,国防安全交通通信、文化教育、娱乐生活,卫生健康等很多方面充分展现魅力与风采。

5. 海洋光学发展历史

非常好考

以往经验看,并不难。

6. 光学在海洋研究中的应用

我们通常把光学分成几何光学、物理光学和量子光学。

几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。

物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。

波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象 ,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。

量子光学1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。

1905 年,爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念。他认为光能并不像电磁波理论所描述的那样分布在波阵面上,而是集中在所谓光子的微粒上。在光电效应中,当光子照射到金属表面时,一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间,电子把这能量的一部分用于克服金属表面对它的 吸力即作逸出功,余下的就变成电子离开金属表面后的动能。

这种从光子的性质出发,来研究光与物质相互作用的学科即为量子光学。它的基础主要是量子力学和量子电动力学。

光的这种既表现出波动性又具有粒子性的现象既为光的波粒二象性。后来的研究从理论和实验上无可争辩地证明了:非但光有这种两重性,世界的所有物质,包括电子、质子、中子和原子以及所有的宏观事物,也都有与其本身质量和速度相联系的波动的特性。

应用光学光学是由许多与物理学紧密联系的分支学科组成;由于它有广泛的应用,所以还有一系列应用背景较强的分支学科也属于光学范围。例如,有关电磁辐射的物理量的测量的光度学、辐射度学;以正常平均人眼为接收器,来研究电磁辐射所引起的彩色视觉,及其心理物理量的测量的色度学;以及众多的技术光学:光学系统设计及光学仪器理论,光学制造和光学测试,干涉量度学、薄膜光学、纤维光学和集成光学等;还有与其他学科交叉的分支,如天文光学、海洋光学、遥感光学、大气光学、生理光学及兵器光学等。

7. 海洋光学高峰论坛

在海洋中,往往由于水的吸收或折射光线会发生衰减,因此水的深度越深,可见光的强度就越弱,直至看不到。根据海洋地理学和光学原理的研究,大约要达到以下深度时,人眼才看不到光:

- 在海洋浅层,光线可穿过海水进入水中,因此在暴晒或波涛作用下,太阳光线能深入到10-25米的浅海中;

- 在海洋深层,光线的吸收和散射程度会增加,到达60 - 100米深度时,光线强度约为水面下的1% - 0.1%;

- 在深海,即在水深1000米以上的海区,光线几乎被完全吸收,因此人类肉眼已无法看见。

当然,以上数据也只是对于正常气象条件和洁净海水来说的,实际情况可能会因海洋环境、天气状况、水质等因素而不同。

8. 海洋光学仪器

如果你说的海大指的是中国海洋大学的话,那么光电信息科学与工程不是它的优势学科,该专业在学校内部的师资力量和科研能力都相对一般,在全国来说是排不到前面的。当然就业除了学校,更多是看个人能力,如果你能学得足够好,前景还是有的。

9. 海洋光学发展现状调查

这种在海水中衰减最小的光,是蓝绿色波段的光。

海水对于不同波长的光的衰减有很大的差别,其中蓝绿波段的光衰减最小,而穿透海水的深度最大。因此在利用可见光进行海洋探测时一般选用蓝绿波段。

海洋光学是研究海洋的光学性质、光在海洋中的传播规律和运用光学技术探测海洋的科学。它是海洋物理学的分支学科,又是光学的分支学科。

10. 海洋光学光源

海缸适合蓝色光源,大海嘛,蓝色的好;

红龙、金鱼等适合用红色光源,增加颜色的强度;

热带鱼适合白色光源,这样的光源最接近大自然;

水草灯就用专业的水草灯,特别是红草。

大多数情况下,为了提供观赏性,都是用白色的灯,特别是超白鱼缸

11. 海洋光学发展现状分析

两者相比较而言,雷达卫星先进些。

光学是最常见的卫星传感器。光学传感器收集人眼可以感知的波长范围内的光和附近红外线中的光。光学传感可以被认为是被动的。卫星传感器在各种电磁辐射频率范围内检查地球表面。

另一方面,雷达遥感可以被认为是主动的。传感器向地球发射微波,以记录其在环绕地球运行的接收器上是如何反射的。这些传感器在观察类型方面提供了广泛的功能。

1.图像目的

使用光学卫星是一种像人眼一样观察世界的好方法。光学传感器测量反射的太阳光,因此只能在白天工作,不能穿透云层。

另一方面,雷达传感器显示人眼不可见的土地覆盖物,且对目标表面的纹理(粗糙度和湿度)敏感;因此,几乎可以在所有天气条件下捕捉所有细节。这些细节包括;海洋污染、土壤湿度、森林生物量和植被覆盖作物类型。

2.角度描绘

光学传感器主要是直视下测量与光线垂直的角度。虽雷达传感器是侧视的,但也会以不同的方式描绘物体的角度,实际上测量的是距离。

3.图像照明

光学传感器依靠太阳光或热辐射来产生传感器观察到的亮度。因此,传感器图像取决于一天中不同时间的不同太阳角度。

相比之下,远程雷达传感器通过天线传输的无线电波携带其照明源。因此,它可以在白天或晚上的任何时间以同样的效率使用。

4.天气状况

光学传感器最显着的缺点是会受到天气条件的不利影响。在透视云层和植被方面有一个缺点。因此,只有在天气和阳光允许的情况下,光学传感器才能捕获高质量的图像。

虽然雷达传感器最显着的优点是不受天气条件的影响,可以穿透云层和植被,但在黑暗或厚厚的云层覆盖时,也可以在感兴趣的区域上使用雷达传感器。

5.开展观察的范围

光学卫星可以详细检查给定的感兴趣区域。使用光学传感器对大片区域进行扫描时,可能比远程雷达卫星多花几天时间。与此同时,雷达传感器非常适合定期扫描复杂、广阔的区域并检测那里可能发生的潜在变化,在短时间内以连续的方式完成此操作。

6.波长或频率的差异

光学传感器使用的波长接近可见光,可以等同于1微米。因此,使用光学传感器捕获的物体可能看起来更平滑。

另一方面,远程雷达传感器使用 1cm 到 1m 的波长。与光学传感器相比,这种优势使其适用于多云和暴风雨天气条件

顶一下
(0)
0%
踩一下
(0)
0%