返回首页

海洋有机物的特点(海洋有机质)

来源:www.shuishangwuliu.com   时间:2023-07-07 06:29   点击:214  编辑:jing 手机版

1. 海洋有机质

不同深度的海水含氧量肯定是不一样的。随着深度越大压力越大,因为水中存在着压力,气体一挤压就会跑掉.

水在深层的密度比浅层略大,所以压强加大,气体难以溶于水,所以含氧量就低

海洋表面的含氧量最高,在海平面以下含氧量逐渐降低,因为海洋浅水层有很多能够进行光合作用的浮游生物,而且与大气直接接触,随着深度增加,含氧量逐步减少。

2. 海洋有机质研究咋样

        海洋水体的主要特点在于:

       有机质等营养物的含量低、盐含量高、温 度低,因此,海洋微生物具有耐压、嗜冷和低营养要求的特点。

3. 海洋有机生物

在原始海洋中,氨基酸、核苷酸等有机小分子物质,经过长期积累,相互作用,在适当的条件下,通过缩合作用或聚合作用,就形成了原始的蛋白质分子和核酸分子。

这些有机高分子物质在海洋中越积越多,浓度不断增加,由于种种原因,这些有机高分子物质经过浓缩而分离出来,它们相互作用,凝聚成小滴。这些小滴漂浮在原始海洋中,外面包有最原始的界膜,与周围的原始海洋环境分隔开,从而构成了一个独立的体系。这时,这种独立的体系已经能够与外界环境进行原始的物质交活动了。这种独立的体系(多分子体系)经过长期不断的演变,特别是蛋白质和核酸的相互作用,终于形成了具有原始新陈代谢作用和能够进行繁殖的原始生命。

4. 海洋有机质输出

大海是原始生命的发源地。原始生命开始形成时,有机质物质通过水流作用,不断在海洋中聚集,随着有机质物质在海洋中浓度不断提高,这些物质间 不断发生反应,在这些反应中,就可能出现非常简单的生命现象,这些生命现象逐步进化,就形成原始生命,原始生命再进一步进化,就可以形成复杂的生命状态。

5. 海洋有机质的主要来源

从海岸向外,到深海大洋区之问的区域,人们称它为大陆边缘地区。这里有水深不到200米的大陆架浅水区,还有大陆架到深海之间的一段陡坡,水深在200~3000米之间,称为“大陆坡”。经过近百年的海上石油勘探,人们发现在大陆架浅水区蕴藏着丰富的油气资源,而且在大陆坡,甚至在小型的海洋盆地等深水海域也都找到了藏油的证据。据调查,海底石油约有1350亿吨,占世界可开采石油储量的45%。举世闻名的波斯湾是世界上海底石油储量最丰富的地区之一。在我国的南海、东海、黄海和渤海湾,也都先后发现了油田。海底石油资源如此丰富,那么它是如何来的呢?要搞清这个问题,还得从几千万年甚至上亿年前的历史地质时期谈起。海底石油在漫长的历史地质时期中,地球上的气候,有的时期比现在温暖湿润,有的时期比现在寒冷干燥。在温暖湿润的地质时期,由于大陆架浅水区气候温和,阳光充足,光线能够透过浅浅的水层照射到海底,加上江河里带来大量的营养物质,水质肥沃,海洋藻类生物在这里大量繁殖。同时,海洋中的鱼类、软体类动物以及其他浮游生物也在这里群集,迅速繁殖。这些生物死亡后,遗体随同江河夹带来的泥沙一起沉积在海底,形成所谓的“有机淤泥”。这样,年复一年,大量的生物遗体和泥沙组成的有机淤泥被一层一层掩埋起来。由于这些地层因某种原因不断下降,有机淤泥越积越厚,越埋越深,最后与外面的空气相隔绝,造成一个缺氧的环境,加上深层处温度和压力的作用,厌氧细菌便把有机质分解,最后形成了石油。不过,这时形成的石油还只是分散的油滴。在地层下,分散的油滴需寻找“藏身之地”。由于气候的变迁,海洋中形成的沉积物有时候颗粒较粗,颗粒问孔隙较大,便形成了砂岩、砾岩;有时候颗粒较细,颗粒问孔隙很小,于是形成页岩、泥岩。在上覆地层的压力作用下,这些分散的油滴被“挤”向多孔隙的砂岩层,成为储积石油的地层;而孔隙很小的页岩层,由于油滴无法“挤”进去,储积不了石油,却成了防止石油逃逸的“保护层”。石油储积在砂岩层中还不具备开采价值,还需经过一个地质构造变形过程,使分散的石油集中在构造的一定部位,这样才能成为可开采的油田。这个过程大致为:原来接近水平的岩层由于受到各种压力的作用而发生变形,形成波浪起伏的形状,向上突起的叫背斜构造,向下弯曲的叫向斜构造;有的岩层经过挤压,形成像馒头一样的隆起,叫穹隆构造。在岩层受到巨大压力而变形的同时,含油层中比重小的石油由于受到下部地下水的浮托,向向斜构造岩层或穹隆构造岩层的顶部汇集,这时石油位于上部,而处在中间、下部的则是水。具有这种构造的岩层就像一个大脸盆,把汇集的石油保存起来,成为储藏石油的大“仓库”,在地质学上叫做“储油构造”,这才有真正的开采价值。

6. 由海洋有机

海洋中的溶解氧,主要是来自空气中的氧气向海水中的溶解过程。另外,浅海的水生植物是可以进行光合作用的,比如海藻。

海藻可以利用日光进行光合作用,制造食物,它们行光合作用,所释放出来的氧气,更是动物们呼吸所不可缺少的;海洋世界之所以如此缤纷热闹,海藻的功劳实不可没。

相关原理:

海洋绿色植物利用太阳的光能,同化二氧化碳(CO2)和水(H2O)制造有机物质并释放氧气的过程,称为光合作用。光合作用所产生的有机物主要是碳水化合物,并释放出能量。

进行光合作用的细菌不具有叶绿体,而直接由细胞本身进行。属于原核生物的蓝藻(或者称“蓝细菌”)同样含有叶绿素,和叶绿体一样进行产氧光合作用。

事实上,普遍认为叶绿体是由蓝藻进化而来的。其它光合细菌具有多种多样的色素,称作细菌叶绿素或菌绿素,但不氧化水生成氧气,而以其它物质(如硫化氢、硫或氢气)作为电子供体。不产氧光合细菌包括紫硫细菌、紫非硫细菌、绿硫细菌、绿非硫细菌和太阳杆菌等。

7. 海洋中的有机物有什么作用

海洋植物,海洋中利用叶绿素进行光合作用以生产有机物的自养型生物。从低等的无真细胞核藻类到高等的种子植物,门类甚广,共13个门,1万多种。其中硅藻门最多,达6000种;原绿藻门最少,只有1种。海洋植物以藻类为主。海洋藻类是简单的光合营养的有机体,其形态构造、生活样式和演化过程均较复杂,介于光合细菌和维管束植物之间,在生物的起源和进化上占很重要的地位。

8. 海水有机质

       引起水质变红的原因有很多。水中溶氧低,有机质含量高,轮虫过多,水质偏酸等等因素都能引起水色变红。

       主要原因还是投料不科学,管理不到位,及期间残饵及粪便增多,改底排污不及时,滥用药物等导致水体中悬浮有机物的增加,水质富营养化,赤潮生物形成 优势种群并抑制有益藻类的生长。所以在养殖过程中一定要用心,不要为了省事就投入很多饲料,为了节约成本就买些不正规的药物产品,同时要对症用药,而不是说此包装说能有杀菌等功能就全部用进去。要学会科学养殖。

9. 海洋有机物

现在我们来看看向下垂直穿过海底一万一千米,看看各水层都有哪些动物。海洋的水层从垂直方向可划分为:

海洋上层:从海面到水下200米。

海洋中层:水层深度为水下200-1000米。

海洋深层:水深1000-4000米。

海洋深渊层:水深4000-6000米。

海洋超深渊层:水深6000-11000米。

上层:绝大多数生物汇聚于此

在上层水域,由于阳光充足,浮游植物可以充分进行光合作用,因此该层又叫光合作用层。这些生产者为海洋生态系统注入了源源不断的生产力,磷虾吃浮游生物,小鱼吃磷虾,大鱼吃小鱼,虎鲸和鲨鱼又吃大鱼,整个食物网欣欣向荣。

最大的动物:蓝鲸

我们知道的大型海生动物如各种海豚、鲸鱼、鲨鱼和金枪鱼等,绝大多数都处在这个水层中。举一些具有代表性的例子:最大的动物——超过200吨的蓝鲸,最大的鱼类——40多吨的鲸鲨,最大的掠食性鱼类——可达3吨的大白鲨,最长的水母——触手长达36.6米的狮鬃水母,最大的双壳贝类——壳长1.37米、软组织重333千克的大砗磲。

触须可达37米的狮鬃水母

中层:深潜者的乐园

往下是200-1000米深度的海洋中层,作为透光的上层和完全黑暗的深层之间的过渡带,本就微弱的光线在这个水层随着深度增加而逐渐消失,而些许的光线也不足以进行光合作用。中层带的生物群落普遍体型较小,像灯笼鱼科、褶胸鱼科、头足类、磷虾和其它甲壳类动物通常只有几厘米到十几厘米的样子。

斑点灯笼鱼

由于该层无法进行光合作用,这里环境较上层严苛得多,食物网的维系有赖上层供给营养,许多生物抓住一切机会摄取上层水域降落下来的有机物质。上层有机物质主要以絮状物形式沉降下来,在探照灯照射下像极了雪花,我们形象地将其称之为"海雪"。

不过,处于中层的海洋生物还可以通过另一种途径吸收上层水域的养分,那就是晚上垂直迁移到表层,在富含养分的上层水域觅食,白天再回到深水,躲避更大的掠食者。因此,这个生态系统在碳循环上可以说是极具效率的,它拥有极高多样性和生物量的鱼类、头足类和甲壳类,能够为远洋地区的上层大型掠食者提供重要的食物来源,比如一些远洋鲨鱼、鲸豚有时会下潜数百米前往中层水域进食头足类和鱼,而抹香鲸这样的深潜型鲸鱼为了觅食更是频繁进入中层,可以视作中层生物群落的过渡成员。

最重的硬骨鱼:翻车鱼

虽说比不上表层,中层带也有巨型海生动物,现今最重的硬骨鱼——重达2.3吨的翻车鱼过去一般被认为是典型的上层鱼,但近年来有研究显示翻车鱼比以往认为的更频繁地潜入中层;最长的硬骨鱼——长达8米的皇带鱼就可以算作中层鱼(严格地说它是上层中层都有分布);而两种巨型鱿鱼——275千克的大王鱿和将近500千克重的南极中爪鱿在这个深度已有分布,当然,两者的生境也包括下一个水层。

大王鱿,中层水域的顶级掠食者

深层:吞噬者之乡

接着是水深1000-4000米的深海层,这里一片黑暗,生物发光是唯一的光源,如果说中层水域的动物们尚且具备强壮的肌肉进行追捕和长距离迁徙,这一深度的大多数生物,其肌肉已经松弛到只适合原地等待猎物主动送上门,极为缓慢的代谢也正是对这种恶劣环境的适应。

约氏黑角鮟鱇

深层水域的主要鱼类是小型钻光鱼和鮟鱇鱼,尖牙鱼、蝰鱼也较常见,这些鱼体型很小,许多在10厘米左右,很少超过25厘米,它们大部分的时间都花在停留于水柱耐心地等待猎物出现。相比中层水域,这里的生物不能太指望上层飘落多少养分,毕竟,上层产生的有机物有20%落到中层,但轮到深层就只有5%了。

在这片贫瘠之海,许多深海鱼类必须想办法吃掉任何能遇到的东西,哪怕对方比自己还大,其中有一些种类也确实为了达到这种目的而演化出了超强的吞噬能力。黑叉齿龙䲢,栖息深度为700-2745米,可能是把吞噬大法修炼到极致的动物,一只体长19厘米的黑叉齿龙䲢曾经吞下84厘米长的黑刃魣蛇鲭,受害者整整是它的4.5倍长。

黑叉齿龙䲢可能是有记录最夸张的吞噬者

体长可达一米的吞噬鳗在这个水层可以算得上小巨无霸了,但真正引人注目的是它那不成比例的超大嘴巴,松松垮垮的颌骨构造可以使这张巨嘴张到很大,再加上具有伸缩性的胃,足以让吞噬鳗吞下比自己还大的猎物。

深海小巨无霸:吞噬鳗

不过,这里还是存在一些真正巨人的,几种巨大的鲨鱼栖息于这个水层(它们在上层和中层皆有分布),比如可达6米的灰六鳃鲨,达到甚至超过6米、体型比之大白鲨也不遑多让的几种睡鲨,抹香鲸、喙鲸等深潜型鲸鱼虽说进入这个深度的频次远不如中层,但它们有时也会来到这个区域搜寻潜在的食物。

硕大的灰六鳃鲨

深渊层:以海雪为生的底栖拾荒者

4000-6000米是深渊层,这里是一个食物极端匮乏的地带,栖息在底部的深海平原上的底栖生物是主流,包括小型鱼类、海参海胆、多毛蠕虫、各种甲壳类和双壳贝类,上层沉降的海雪是它们的美餐。

海雪是由表层生物碎屑、粪便颗粒、死去的浮游生物聚集而成的絮状物,几天之内即可沉降到海底,极大地提高了表层有机物的传递速率。相比之下单个浮游生物沉降速度很慢,每天一米,需要超过十年才能沉到底部,通常到不了海底就被分解者分解掉了。

北冰洋深海的海雪

海雪源源不断从表层转运有机物质,这种以生物为媒介,通过生物生产、消费、分解和沉降作用,将表层有机物传递给底层的过程,我们称之为海洋生物泵。在没有光合作用的深渊水域,以海雪为主的海洋生物泵就是深海生物的主要食物来源,构成了深海小食物网的基石。

海底生物个头小,代谢低,所需的食物并不多,偶尔如果碰到比海雪大很多的食物,就能够解决它们几年甚至几十年的伙食问题,比如在海面上大量繁殖后死亡并迅速沉底的藻类,以及进食藻类后快速繁殖、大量聚在一起并在死亡后下沉的樽海鞘,又或者沉入海底的鲸鱼尸体,这些都可以算得上底栖生物们的深海盛宴了。

水下四千多米的海底,一大群海参铺满了海床

在海底的某些地区,比如洋中脊,能够形成热液喷口,此处的养分较为丰富,海底微生物可进行初级生产将化学能固定为生物能,在没有光合作用的情况下也能维持许多底栖生物。

超深渊层:高压寒冷的黑色荒漠

最后一层,超深渊层,是海洋中最深的地带,存在于海底狭长的海沟中,水深6000-11000米,可谓深渊中的深渊。超深渊栖息地在全球海洋中数量不多,总共也仅有46个(33条沟壕和13处洼地),这些海沟的平均深度约为8216米,其中最深的是11034米的马里亚纳海沟。

在这里,生存条件之严酷已无需赘言,物种多样性和生物量已大大降低,但还是有一些生命在此地顽强生存着,包括鱼类、海参、多毛类、双壳类、等足类、腹足类和端足类动物。目前拍到的活体鱼类最深纪录为钝口拟狮子鱼——8178米,可达23.8厘米,鱼类被捕获的最深纪录为神女底鼬鳚——最大体长16.5厘米,捕获深度8370米。

拍摄于水下7400米的拟狮子鱼,相当可爱

一些无脊椎动物可以生存于更深的水域,包括某些海参、端足类可超过10000米水深,比如体长可达5厘米(在深海已不算小)的短脚双眼钩虾,这种端足类动物栖息于马里亚纳海沟的最深处,能够消化埋在海底深处的木屑,对海底木质食物的利用可能是它克服恶劣生存环境的有利因素之一。

栖身于马里亚纳海沟最深处的短脚双眼钩虾

目前人类对那些最深的海沟仍所知甚少,尽管如此,深海潜水器、深海探测器和生物捕捉器等先进设备还是助我们揭开了超深渊水带的神秘面纱。深海确实是可怕的,但其可怕来自于环境本身,担心有什么大海怪大可不必。伸手不见五指的黑暗,相当于1000个大气压的水压,常年0-3℃的冰冷海水,贫瘠到只有靠深海热泉和海雪降落维系的生态系统,没有任何大型动物能够在如此恶劣的环境中生存。那些说深海藏匿着未知巨型生物、史前海怪孑遗的谣言可以休矣,水深8400米以下就没有任何鱼类,一万米处5厘米长的小钩虾就是巨无霸了,对生命来说,超深渊的海沟是一片比沙漠还荒芜之地。

10. 海洋有机质氮含量与陆源有机质含量比较

耕种的土壤一般性标准,单位是毫克/公斤,

氮在150-200,磷60-100,钾100-150.

其中氮分为铵态和硝态,

土壤中的氮素绝大多数是以有机态存在的,有机态氮素在耕作等一系列条件下,经过土壤微生物的矿化作用,转化为无机态氮供作物吸收利用.土壤中有机态氮与无机态氮的总和称土壤全氮.土壤氮素绝大部分来自有机质,故有机质的含量与全氮含量成正相关.土壤中的全氮含量代表着土壤氮素的总贮量和供氮潜力.因此,全氮含量与有机质一样是土壤肥力的主要指标之一.碱解氮又叫水解氮,它包括无机态氮和结构简单能为作物直接吸收利用的有机态氮,它可供作物近期吸收利用,故又称速效氮.碱解氮含量的高低,取决于有机质含量的高低和质量的好坏以及放入氮素化肥数量的多少.有机质含量丰富,熟化程度高,碱解氮含量亦高,反之则含量低.碱解氮在土壤中的含量不够稳定,易受土壤水热条件和生物活动的影响而发生变化,但它能反映近期土壤的氮素供应能力.

11. 海洋有机质来源

海洋植物的种类非常多,常见的有:紫菜、石花菜、龙须菜、红树林、秋茄、海桑、麒麟菜、珊瑚藻、马尾藻、海带、红毛菜、裙带菜、浒苔、石莼、水芫花、玉蕊、木榄、海莲、角果木等。海洋植物是海洋中利用叶绿素进行光合作用以生产有机物的自养型生物。

顶一下
(0)
0%
踩一下
(0)
0%