1. 海洋发电原理
海上风电产生的电能,需要先送往海上升压站升压,再进行输送。一般为了更节约电能,减少损耗,会进行两次升压,先由690V升至35KV,再由35KV升至110KV或220KV。
为了将电能从海上风电场运往内陆电网,还需要使用海上电缆。电缆是在涨潮时施工船舶施工埋入海底的。由于海上风电场距离陆地一般比较远,因此需要使用电缆的量非常大,通常要施工好几次才能够完成电缆的铺设。在铺设电缆时,施工船会先用海缆埋设犁在海底挖出2-3米深的埋缆沟,然后再将电缆埋好。铺设好的海底电缆可以连接海上升压站和内陆电网,将海上风电产生的电能输送到陆地上的需电区域。
不过,海上风电毕竟是在海上发电,而海水是很容易腐蚀发电设备的。因此最好建
2. 海洋发电方式
水力发电主要是利用用水的落差产生的动能进行发电,一般情况下,落差越大越好。
在大海里,海水的流动主要不是落差造成的,其动能太小,不能驱动水利发电机组转动。
在治海地区也有利用潮汐发电的,即海水涨潮和退潮时落差比较大,可以驱动水利发电机组发电。
3. 海洋发电的特点和意义
潮汐发电的原理和通常的水力发电相似,是在海湾或有潮汐的河口上建筑一座拦水堤坝,将入海河口或海湾隔开,建造一个天然水库,并在堤坝中或坝旁安装水轮发电机组,利用潮汐涨落时海水水位的升降,使海水通过水轮机来推动水轮发电机组发电。
潮汐能无止无息,开发潜力非常大。潮汐发电的主要优点是:
①潮汐电站的水库都是利用河口或海湾建成的,不占用耕地,也不像河川水电站或火电站那样要淹没或占用大量的良田;
②不受洪水和枯水季节的影响,也不像火电站那样污染环境,是一种既不受气候条件影响而又十分干净的发电站;
③潮汐电站的堤坝较低,容易建造,投资也很少。海洋潮汐是怎样发电的呢?
海洋潮汐是因为月球和太阳引潮力的作用而引起的海水周期性涨落现象。
人们通常把海水在白天的涨落叫做“潮”,把海水在夜间的涨落叫做“汐”,合起来称为“潮汐”。潮汐时时发生,无止无息。
月球虽然比太阳小得多,但它离地球比太阳近得多,月球对地球上海水的引潮力大约是太阳的2.17倍。
海洋的潮汐中蕴藏的巨大的能量。
在涨潮的过程中,汹涌而来的海水带有非常庞大的动能,而随着海水水位的升高,就把海水的巨大动能转化为势能。
在落潮的过程中,海水奔腾而去,水位逐渐降低,大量的势能又转化为动能。
海水在潮涨潮落运动中所包含的大量动能和势能,称为潮汐能。海洋的潮汐能非常大。
在我国浙江省萧山县新湾海塘上,有两块钢筋混凝土块,每块的重量有12吨左右,在1968年的一次潮头过后发现,这两块巨大的钢筋混凝土块竟被海潮推移了30多米的距离,可见海潮的力量之大!潮汐涨落而形成的水位差,也就是相邻高潮潮位与低潮潮位的高度差,称为潮位差或潮差。
一般,海洋中的潮差比较小,一般只有几十厘米,多者也只有1米左右。而在喇叭状海岸或河口的地区,潮差就很大。
例如,加拿大的芬迪湾、法国的塞纳河口、我国的钱塘江口、英国的泰晤士河口、巴西的亚马逊河口、印度和孟加拉国的恒河口等,都是世界上潮差很大的地区。
其中芬迪弯的潮差最高,达18米,是世界上潮差最大的地区。
海洋潮汐能的大小随潮差而变,潮差越大那么潮汐能也越大。
比如,在1平方千米的海面上,潮差5米时,其潮汐能的最大发电能力约为5500千瓦;而潮差为10米时,其潮汐能的最大发电能力可达22000千瓦。
科学家们预算,全世界海洋蕴藏的潮汐能大概有27亿千瓦,其每年的发电量可达33480万亿度。所以巨大的海洋潮汐有“蓝色的煤海”之称。我国的海岸线长达2万千米,潮汐能的蕴藏至少有2亿千瓦,约占世纪潮汐能总蕴藏量的8%。
其中,渤海3000万千瓦,黄海5500万千瓦,东海7400万千瓦,南海4000万千瓦。
钱塘江的潮汐能大约700万千瓦。建国以后,在我国的广东、上海、福建、浙江、山东和江苏等地先后建成了数十座小型潮汐发电站。
1980年我国建成的浙江温岭县江厦潮汐电站,其装机总容量为3000千瓦,有几台500~700千瓦的机组已相继正式并网发电。
这座潮汐电站的规模仅次于法国的朗斯潮汐电站,居世界第二位。
人类越来越重视对天然资源的开发和利用,其中海洋潮汐发电的开发前影很大,如能让人类全面利用,那会给人类带来更多的便利。
4. 海洋能发电原理
电鳐身体内部有一种奇特的放电器官,可以在身体外面产生很强的电压。这个电器分布在电鳐的胸腹部两侧,样子像两个扁平的肾脏,是由许多蜂窝状的细胞组成的,它们排列成六角柱体,叫“电板”柱。电鳐身上共有2000个电板柱,有200万块“电板”。这些电板之间充满胶质状的物质,可以起绝缘作用。每个“电板”的表面分布有神经末梢,一面为负电极,另一面则为正电极。电流的方向是从正极流到负极,也就是从电鳐的背面流到腹面。
在神经脉冲的作用下,这两个放电器就能把神经能变成为电能,放出电来。
单个“电板”产生的电压很微弱,可是,由于数量很多,就能发出很强的电压来。电鳐的每一个电板,只是肌纤维的变态。发电器官是从某些鳃肌演变而来的,在演变发生过程中解除了腮肌原来的职务,而承担了新的作用——发电。发电器最主要的枢纽是器官的神经部分,电鳐能随意放电,放电时间和强度,它完全能够自己掌握。
电鳐还能够按照自己的需要,在10~16秒的时间里,每秒钟放电150次,每次放电电压有80伏特。
南美电鳐放出的电压小些,只有38伏特。
非洲最大的电鳐能产生220伏特的电压,功率达3000瓦,足足能够击毙大鱼。电鳐是用发电器官来杀死或麻痹猎物的。在梯斯河口捕到的两条电鳐,其中一条的胃中有一条900克重的鳗鲡和一条450克重的鲽鱼;另一条的胃中有一条重2200多克的鲑。所有这些被猎食的鱼,身上都有伤痕。电鳐发出的电流强度有强有弱,这同电鳐的大小和电板的多少有关系。
人如果不小心踩着海底的电鳐时,它放出的电足够将一个成年人电倒。
5. 海洋发电所有种类
太阳辐射到地球上的热量,陆地吸收,空气也吸收,但都比不上海洋吸收得多。这不仅是因为海洋占地球表面积的70%,而且还因为海水的热容量大:比土壤大2倍,比花岗岩大5倍,比空气大3000多倍。海水温差发电,就是想把海洋吸收的这些热量利用起来。海水温差发电的原理很简单,即先将海洋表面温度较高的海水引入真空锅炉,由于压力突然大幅度下降,如降到0.03大气压下,24℃的水也会沸腾,于是温海水产生的蒸汽就可带动汽轮发电机发电,然后再用深层冷一些的海水冷凝气;也可以用温度较高的表层海水给沸点较低的氨或氟利昂加热后发电。在20世纪70年代末,美国已制成温差发电的实验装置,发电能力为50千瓦,有人计算,如果把南北纬20°以内的海洋充分利用起来,海水温度只需降低1℃,就将发出600亿千瓦的电,可见温差发电的潜力是很大的。
6. 海洋发电站
1、海洋生物资源:鱼、虾、贝、藻等可供食用或药用。
2、海洋矿产资源:一是在大陆架浅海海底,埋藏着丰富的石油、天然气以及煤、硫、磷等;二是在近岸带的滨海砂矿中,富含砂、贝壳等建筑材料和金属矿产;三是在多数海盆中,广泛分布着深海锰结核。
3、海洋能源:具有商业开发价值的是潮汐发电和波浪发电。
4、海洋空间资源:包括交通运输、生产、通信、电力输送、储藏、文化娱乐等领域。交通运输包括海港码头、海上船舶、航海运河、海底隧道、海上桥梁、海上机场、海底管道等。生产空间包括海上电站、工业人工岛、海上石油城、围海造地、海洋牧场等。通信和电力输送空间主要是海底电缆。储藏空间包括海底货场、海底仓库、海上油库、海洋废物处理场等。文化娱乐设施空间包括海洋公园、海滨浴场、海上运动区等。
7. 海洋发电原理图
潮汐能、海流能、波浪能、海水温差能、海水浓度差能等,统称海洋能。
海洋能是一种蕴藏在海洋中的可再生能源,包括潮汐能、波浪引起的机械能和热能。海洋能同时也涉及一个更广的范畴,包括海面上空的风能、海水表面的太阳能和海里的生物质能。
中国拥有18,000公里的海岸线和总面积达6,700平方公里的6,960座岛屿。这些岛屿大多远离陆地,因而缺少能源供应。因此要实现我国海岸和海岛经济的可持续发展,必须大力发展我国的海洋能资源。
扩展资料:
海洋能特点:
1、海洋能在海洋总水体中的蕴藏量巨大,而单位体积、单位面积、单位长度所拥有的能量较小。这就是说,要想得到大能量,就得从大量的海水中获得。
2、海洋能具有可再生性[。海洋能来源于太阳辐射能与天体间的万有引力,只要太阳、月球等天体与地球共存,这种能源就会再生,就会取之不尽,用之不竭。
3、海洋能有较稳定与不稳定能源之分。较稳定的为温度差能、盐度差能和海流能。不稳定能源分为变化有规律与变化无规律两种。属于不稳定但变化有规律的有潮汐能与潮流能。
人们根据潮汐潮流变化规律,编制出各地逐日逐时的潮汐与潮流预报,预测未来各个时间的潮汐大小与潮流强弱。潮汐电站与潮流电站可根据预报表安排发电运行。既不稳定又无规律的是波浪能。
8. 海洋发电现状及趋势
海洋能开发具有战略意义 未来市场空间巨大
海洋能是指蕴藏在海洋中的可再生能源,如潮汐能、波浪能、温差能、盐差能、海流能、海风能、海洋热能等,这些海洋能经过合理利用可以转换成电能或其他形式的能。海洋能蕴藏量巨大,具有可再生性,属于清洁能源,在全球调整能源结构、应对能源危机、保护环境的情况下,海洋能开发利用具有战略意义,已经成为较多沿海国家着重开发的能源之一。
经过不断发展,部分海洋能已经被列入到较多沿海国家的开发利用计划中,但由于海洋能开发利用成本高、经济效益较差、部分关键领域技术瓶颈尚未突破,与太阳能、风能等新能源相比,现阶段全球海洋能开发利用程度依然较低。海洋能取之不尽用之不竭,是清洁可再生的新型能源,随着其应用技术不断进步,受全球各国的关注度不断提高,其行业规模持续扩张。
根据新思界产业研究中心发布的《2020-2024年中国海洋能行业市场调查研究报告》显示,2011年,全球海洋能发电装机容量迅速攀升,增长近一倍;2011-2019年,全球海洋能发电装机容量较为平稳,维持在520MW上下浮动。由此可以看出,全球海洋能开发利用规模较小。全球范围内有多个地区均在开发利用海洋能,其中,欧洲地区应用比重最大,潮汐能是其主要开发利用领域。
中国海岸线有1.8万公里,海洋面积有470万平方公里,海洋能可开发潜力巨大,20世纪80年代以来,我国海洋能开发利用规模不断增长。我国海洋能理论潜在量中,温差能所占比重最大,达到50%左右,而我国开发技术成熟、开发规模相对较大的海洋能主要是潮汐能、潮流能、波浪能。我国海洋能开发利用领域还有巨大增长空间。
从技术领域来看,我国潮汐能与潮流能发电技术相对成熟,已经达到或接近国际先进水平,其中,潮汐能发电装机容量最大,潮流能发电装机容量相对较小;波浪能发电技术在部分领域达到国际先进水平,但发电设备可靠性方面依然存在差距,总装机容量小;在温差能与其他海洋能开发利用方面,我国尚处于起步阶段,未来还有较大进步空间。
新思界行业分析人士表示,海洋能种类多样,蕴藏量巨大,且都属于可再生的清洁能源,在全球能源结构调整的情况下,其可开发潜力巨大。在全球市场中,欧洲地区海洋能开发利用规模相对较大,我国经过不断发展,在部分技术领域已经达到或接近国际先进水平,但还有较多领域技术尚不成熟,需要继续探索。我国正在大力发展新能源产业,未来随着海洋能开发利用技术不断成熟,我国海洋能市场还有巨大发展空间。
9. 海洋发电原理图解
您好,海上风力发电通常安装在浅海海底或深海海底,安装的方法也有所不同。
浅海海底安装:
浅海海底通常是指水深不超过30米的海域,这种海域的海上风力发电通常采用固定式安装。具体操作步骤如下:
1. 首先需要使用专业的船只将风机和设备运输到海上,并将其吊装到水面上。
2. 然后使用大型起重机将风机吊装到海底,通常需要使用混凝土或钢筋水泥桩将其固定在海底。
3. 安装完毕后,需要连接电缆和输电线路,将海上风力发电所产生的电力输送到陆地上。
深海海底安装:
深海海底通常是指水深超过30米的海域,这种海域的海上风力发电通常采用浮式安装。具体操作步骤如下:
1. 首先需要使用专业的船只将风机和设备运输到海上,并将其吊装到水面上。
2. 然后使用专业的平台将风机和设备浮放到海上,并使用缆绳将其固定在海面上。
3. 最后,需要连接电缆和输电线路,将海上风力发电所产生的电力输送到陆地上。
无论是固定式安装还是浮式安装,海上风力发电的安装都需要专业的技术人员和设备,以确保安装的安全可靠。
10. 海洋发电原理是什么
海洋中蕴藏着丰富的太阳热能。太阳每年供应给海洋的热能大约有60多功能万亿千瓦时,这样庞大的能量,除了一部分转变为海流的动能和水气的循环外,都直接以热能的形式储存在海水中, 主要表现为海水表层和深层直接的温差。通常情况下,海水表层的温度可达25-28℃ ,而海平面以下500米的深处水温大约只有4-7℃,两者相差20℃左右,热带海洋的温差更为明显.在赤道地区,接近海面的表面海水温度在太阳照射下高达近30摄氏度,而水深数百米的深层海水温度是5~10度。海洋温差发电就是利用这一温差进行的。据佐贺大学海洋能源研究中心介绍,位于北纬40度——南纬40度的100个国家和地区都可以进行海洋温差发电.火力发电和原子能发电是以热能使水沸腾,利用蒸汽带动涡轮机,然后发电。作为带动涡轮机的蒸汽。海洋温差发电是利用氨和水的混合液。与水的100度相比,氨水的沸点是33度,容易沸腾。借助表面海水的热量,利用蒸发器使水沸腾,用氨蒸汽带动涡轮机。氨蒸汽会被深层海水冷却,重新变成液体。在这一往返过程中,可以依次将海水的温差变成电力。海洋温差发电的原理是19世纪后半期由法国人想出来的。日本人上原从1973年开始进行研究。为了高效地将海水热量伟给氨,他开发了电容器板热交换装置,安装在凝结器和蒸发器上。结果,他确立了海洋温差发电中最高度的“上原循环”系统。上原解释说:“由于燃料是海水,燃料费等于零。如果能够提高系统效率、降低成本,就可以投入实用。”上原等研究人员将表面海水放入特殊的真空容器里,使它迅速蒸发,然后用深层海水进行冷却,成功地使之变成了淡水。据测算,印度1000千瓦的海洋温差发电设备一天可生产1.6万瓶淡水。海洋温差发电的能源变换效率是3%~5%,比火力发电的40%低得多。但如果一台发电设备的输出功率达不到1万千瓦的规模,每千瓦小时的发电成本就难以控制在可与其他发电方式竞争的10日元以下。然而,美国工程师设计的一个16万千瓦的海洋温差发电装置,全长450米,自重23.5万吨,排水量达30万吨。由于海洋能密度比较小,并且能源变换效率是3%~5%,很低.所以要得到比较大的功率,海洋能发电装置要造得很庞大。而且还要有众多的发电装置,排列成阵,形成面积广大的采能场,才能获得足够的电力。这是海洋能利用的共同特点。 由于海洋温差能开发利用的巨大潜力,海洋温差发电受到各国普遍重视。目前,日本、法国、比利时等国已经建成了一些海洋温差能电站,功率从100千瓦至5000干瓦不等。上万干瓦的温差电站也在建设之中。
11. 海洋能源发电的原理
潮汐发电与普通水力发电原理类似,通过出水库,在涨潮时将海水储存在水库内,以势能的形式保存,然后,在落潮时放出海水,利用高、低潮位之间的落差,推动水轮机旋转,带动发电机发电。
海水涨潮时水位高于水库水位,海水向水库流动推动水轮机运转。海水退潮时水位低于水库水位,水库水向海洋流动推动水轮机运转。
差别在于海水与河水不同,蓄积的海水落差不大,但流量较大,并且呈间歇性,从而潮汐发电的水轮机结构要适合低水头、大流量的特点。