返回首页

海洋放射性监测(海水放射性检测)

来源:www.shuishangwuliu.com   时间:2023-05-25 22:39   点击:243  编辑:jing 手机版

1. 海水放射性检测

是的。

根据查询相关资料信息显示,日本核污水排放会直接对海洋环境、海洋生物造成放射性污染,排入到太平洋对舟山海洋环境及海洋水产业造成的影响。

2. 海水的放射性浓度

最重的天然元素铀已经成为新能源的主角,那么铀又是怎样提炼出来的呢? 在居里夫妇发现镭以后,由于镭具有治疗癌症的特殊功效,镭的需要量不断增加,因此许多国家开始从沥青铀矿中提炼镭,而提炼过镭的含铀矿渣就堆在一边,成了“废料”。 然而,铀核裂变现象发现后,铀变成了最重要的元素之一。这些“废料”也就成了“宝贝”。从此,铀的开采工业大大地发展起来,并迅速地建立起了独立完整的原子能工业体系。 铀是一种带有银白色光泽的金属,比铜稍软,具有很好的延展性,很纯的铀能拉成直径0.35毫米的细丝或展成厚度0.1毫米的薄箔。铀的比重很大,与黄金差不多,每立方厘米约重19克,像接力棒那样的一根铀棒,竟有十来公斤重。 铀的化学性质很活泼,易与大多数非金属元素发生反应。块状的金属铀暴露在空气中时,表面被氧化层覆盖而失去光泽。粉末状铀于室温下,在空气中,甚至在水中就会自燃。美国用贫化铀制造的一种高效的燃烧穿甲弹—“贫铀弹”,能烧穿30厘米厚的装甲钢板,“贫铀弹”利用的就是铀极重而又易燃这两种性质。 铀元素在自然界的分布相当广泛,地壳中铀的平均含量约为百万分之2.5,即平均每吨地壳物质中约含2.5克铀,这比钨、汞、金、银等元素的含量还高。铀在各种岩石中的含量很不均匀。例如在花岗岩中的含量就要高些,平均每吨含3.5克铀。依此推算,一立方公里的花岗岩就会含有约一万吨铀。海水中铀的浓度相当低,每吨海水平均只含3.3毫克铀,但由于海水总量极大,且从水中提取有其方便之处,所以目前不少国家,特别是那些缺少铀矿资源的国家,正在探索海水提铀的方法。 由于铀的化学性质很活泼,所以自然界不存在游离的金属铀,它总是以化合状态存在着。已知的铀矿物有一百七十多种,但具有工业开采价值的铀矿只有二、三十种,其中最重要的有沥青铀矿(主要成分为八氧化三铀)、品质铀矿(二氧化铀)、铀石和铀黑等。很多的铀矿物都呈黄色、绿色或黄绿色。有些铀矿物在紫外线下能发出强烈的荧光,我们还记得,正是铀矿物(铀化合物)这种发荧光的特性,才导致了放射性现象的发现。 虽然铀元素的分布相当广,但铀矿床的分布却很有限。国外铀资源主要分布在美国、加拿大、南非、西南非、澳大利亚等国家和地区。据估计,国外已探明的工业储量到1972年已超过一百万吨。随着勘探活动的广泛和深入,铀储量今后肯定还会增加。我国铀矿资源也十分丰富。 铀矿是怎样寻找的呢?铀及其一系列衰变子体的放射性是存在铀的最好标志。人的肉眼虽然看不见放射性,但是借助于专门的仪器却可以方便地把它探测出来。因此,铀矿资源的普查和勘探几乎都利用了铀具有放射性这一特点:若发现某个地区岩石、土壤、水、甚至植物内放射性特别强,就说明那个地区可能有铀矿存在。 铀矿的开采与其它金属矿床的开采并无多大的区别。但由于铀矿石的品位一般很低(约千分之一),而用作核燃料的最终产品的纯度又要求很高(金属铀的纯度要求在99.9%以上,杂质增多,会吸收中子而妨碍链式反应的进行),所以铀的冶炼不象普通金属那样简单,而首先要采用“水冶工艺”,把矿石加工成含铀60~70%的化学浓缩物(重铀酸铵),再作进一步的加工精制。 铀水冶得到的化学浓缩物(重铀酸氨)呈黄色,俗称黄饼子,但它仍含有大量的杂质,不能直接应用,需要作进一步的纯化。为此先用硝酸将重铀酸铵溶解,得到硝酸铀酰溶液。再用溶剂萃取法纯化(一般用磷酸三丁酯作萃取剂),以达到所要求的纯度标准。 纯化后的硝酸铀酰溶液需经加热脱硝,转变成三氧化铀,再还原成二氧化铀。二氧化铀是一种棕黑色粉末,很纯的二氧化铀本身就可以用作反应堆的核燃料。 为制取金属铀,需要先将二氧化铀与无水氟化氢反应,得到四氟化铀;最后用金属钙(或镁)还原四氟化铀,即得到最终产品金属铀。如欲制取六氟化铀以进行铀同位素分离,则可用氟气与四氟化铀反应。 至此,能作核燃料使用的金属铀和二氧化铀都生产出来了,只要按要求制成一定尺寸和形状的燃料棒或燃料块(即燃料元件),就可以投入反应堆使用了。但是对于铀处理工艺来说,这还只是一半。 我们知道,核燃料铀在反应堆中虽然要比化学燃料煤在锅炉中使用的时间长得多,但是用过一段时间以后,总还是要把用过的核燃料从反应堆中卸出来,再换上一批新的核燃料。从反应维中卸出来的核燃料一般叫辐照燃料或“废燃料”。烧剩下的煤渣一般都丢弃不要了,可这种不能再使用的废燃料却还大有用处呢! 废燃料之所以要从反应堆中卸出来,并不是因为里面的裂变物质(铀235)已全部耗尽,而是因为能大量吸收中子的裂变产物积累得太多,致使链式反应不能正常进行了。所以,废燃料虽“废”,但里面仍有相当可观的裂变物质没有用掉,这是不能丢弃的,必须加以回收。而且在反应堆中,铀238吸收中子,生成钚239。钚239是原子弹的重要装药,它就含在废燃料中,这就使得用过的废燃料甚至比没有用过的燃料还宝贵。除此而外,反应堆运行期间,还生成其它很多种有用的放射性同位素,它们 蘑菇云也含在废燃料中,也需要加以回收。 从原理上讲,废燃料的处理与天然铀的生产并无多大差别。一般先把废燃料溶解,再用溶剂萃取法把铀、钚和裂变产物相互分开,然后进行适当的纯化和转化。但实际上,废燃料的处理是十分困难的。世界上很多国家都能生产天然铀,很多国家都有反应堆,但是能处理废燃料的国家却并不多。 废燃料的处理有三个特点:一是废燃料具有极强的放射性,它们的处理必须有严密的防护设施,并实行远距离操作;二是废燃料中钚含量很低而钚又极贵重,所以要求处理过程的分离系数和回收率都很高;三是钚能发生链式反应,因此必须采取严格的措施,防止临界事故的发生。目前,废燃料的处理大都采用自动化程度很高的磷酸三丁酯萃取流程。 我们看到,在铀处理的工艺链中,相对于反应堆而言,铀水冶工艺在反应堆之前进行,所以通常叫做前处理,废燃料处理在反应堆之后进行,所以通常叫做后处理。而从铀矿石加工开始的整个工艺过程,包括铀同位素分离以及核燃料在反应堆中使用在内,一般总称为核燃料循环。 从以上极为简单的介绍就可以看出,铀和钚确是得之不易的。原子能工业犹如一条长长的巨龙,要最重的天然元素铀做出轰轰烈烈的事业,得经过多少次加工和处理、分析和测量、计算和核对啊!原子能工业又犹如一座高高的金字塔,要制造一颗原子弹,就要使用一、二十公斤铀235或钚239;要生产一、二十公斤铀235或钚239,就要消耗十来吨天然铀;要生产十来吨天然铀就要加工近万吨铀矿石。我们赞赏核电站的雄姿,惊叹原子弹的威力,可千万不能忽视支撑这座金字塔塔尖的无数块砖石啊!

3. 海洋放射性检测

测量海洋底 部的地球物 理场的性质及其变化特征,绘制成不同比例尺的海图和专题海图。

海洋测绘大致可分3个阶段:①20世纪30~50年代中期,开始对海洋进行地球物理测量,包括海洋地震测量、海洋重力测量等。这阶段利用回声探测数据绘制海底地形图,揭示了海洋底部的地形地貌;利用双折射地震法获取大洋地壳的各种地球物理性质,证明大洋地壳与大陆地壳有显著的差异。②1957~1970年,实施了国际地球物理年(1957~1958)、国际印度洋考察(1959~1965)、上地幔计划(1962~1970)等国际科学考察活动,发现了大洋中条带磁异常,为海底扩张说提供了强有力的证据,揭示了大洋地壳向大陆地壳下面俯冲的现象,观测了岛弧海沟系地震震源机制。③70年代以后,广泛应用电子技术和计算机技术于海洋测绘中。

测量方法主要包括海洋地震测量、海洋重力测量、海洋磁力测量、海底热流测量、海洋电法测量和海洋放射性测量。因海洋水体存在,须用海洋调查船和专门的测量仪器进行快速的连续观测,一船多用,综合考察。基本测量方式包括:①路线测量。即剖面测量。了解海区的地质构造和地球物理场基本特征。②面积测量。按任务定的成图比例尺,布置一定距离的测线网。比例尺越大,测网密度愈密。在海洋调查中,广泛采用无线电定位系统和卫星导航定位系统。

4. 海水放射性物质含量

这个东西并不好估计,辐射物的含量其实就是说这个海水里面辐射物所具有的能量,但是我们都知道核辐射所带来的威力是很大的,尤其又是128万吨,可以说里面辐射物的含量非常大,那些放射性物质也不能稀释,只有通过专门的手法来进行进化。

福岛周边6个县市近海,约128万吨可能受核污染的海水,被注入来往船只的减摇水舱,并在到达韩国海域后排出。报道中指出,日本福岛附近的海水正在无任何管制地大量流入了韩国流域。船舶卸货后,为使重量减轻的船只保持平衡,会向减摇水舱注入海水,也被称为平衡水。但问题是,在福岛附近海域注入平衡水后,这些船只进入了韩国境内,很可能受到核污染的平衡水会被排放到韩国水域。

从福岛附近6个县的海域注入并排放到韩国水域的平衡水,估计约有128万吨,在最有可能受到核污染的福岛近海注入的平衡水预计约有6703吨。

目前韩国禁止进口福岛附近海域的水产物,但是该区域的海水却无管制地流入了韩国境内。

去年,日本政府一个工作小组梳理福岛污水处置方法,认为排入海洋和排入大气产生的影响“持续时间较短”。日本原子能规制委员会委员长认为,排放入海是处理福岛污水的“唯一办法”。日本不少民众和渔业协会随即发声,强烈反对把辐射污水排放入海。

如果届时日本被披露将污水排入太平洋,势必引发韩国方面的强烈谴责,同时,或将受到核污水影响的太平洋沿岸国家,同样应该意识到核污染的严重性,并寻求跨国合作应对污染

5. 海水 放射性

       岛国排放核污水,不光污染海洋生态环境,时间久了淡水也会出问题。

         放射性物质是不会随着海水而蒸发的。往往是海水蒸发之后,放射性物质会沉积在地层内,污染地层内的水质而且这种情况下沉积的放射性物质更难去除。所以一般情况下会把放射性物质直接排放到水域。

6. 海水放射性活度

是放射性活度单位 。

        放射性核素在单位时间内发生衰变的原子核的次数称为放射性活度(即衰变率)。

         国际单位是贝可(Bq)每秒钟发生1次衰变, 针对放射性物质 1Bq=1DPS 60DPM=1DPS M是分钟的意思, S是秒的意思。 1Ci=37000000000Bq CPS是指仪器的计数率,测到的每秒计数,并不是放射性物质的所有计数都能被仪器测量到,有个效率问题。不同能量的射线会有不同的效率,还有角度等问题,一般都有个约定方法来测量效率,有所比较。

Bq表示放射性的活度 1Bp(贝可)=1cps(每秒一次衰变)

cpm(表示每分钟多少次衰变) DPM是每分钟的衰变数。

7. 海水放射性物质扩散图

衰减的速度很慢,一千年都不能消失的。

8. 水体放射性监测

禁止向水体排放油类、酸液、碱液或者剧毒废液;禁止在水体清洗装贮过油类或者有毒污染物的车辆和容器;

禁止向水体排放、倾倒放射性固体废物或者含有高放射性和中放射性物质的废水;

禁止向水体排放、倾倒工业废渣、城镇垃圾和其他废弃物;

禁止将含有汞、镉、砷、铬、铅、氰化物、黄磷等的可溶性剧毒废渣向水体排放、倾倒或者直接埋入地下。

9. 海水放射性检测仪器

11.8.1 核辐射测量的单位

11.8.1.1 放射性活度

放射性活度A是表征放射性核素衰变数量的物理量,系指给定时刻处于特定能态下的一定量放射性核素在单位时间内发生核衰变的次数,即

勘查技术工程学

在SI制中,活度的单位为贝可[勒尔],用符号Bq表示。1Bq是指一定量的核素每秒产生一次核衰变,即1Bq=1s-1。在CGS制中,活度的单位为居里(Ci),它与Bq的关系为

1Ci=3.7×1010Bq

11.8.1.2 物质中放射性核素的含量

固体物质中放射性核素的含量常用质量分数wb表示。wb是指放射性核素b的质量与混合物质量之比。在SI制中,单位为%、10-6、10-9。核法勘探中,钾的质量分数w(K)用%作为单位;平衡铀的质量分数w(U)用10-6作为单位。当对放射性核素及其平衡状态不清时,则以百万分之一当量铀作单位,w(eU)=10-6表示与w(U)=10-6U产生的γ辐射的电离效应相当的放射性物质的质量分数。

液体或气体中放射性核素的含量大都以质量浓度ρb表示,ρb是放射性核素b的质量与混合物体积之比。SI制中ρb的单位有kg/m3、g/m3、mg/m3、ng/m3(仅适用于气体样品)。ρb的单位还有g/L、mg/L、μg/L。两种单位的关系为

勘查技术工程学

应特别指出的是,液体和气体中氡的含量是用放射性活度浓度表示的。放射性活度浓度系指样品中氡的放射性活度A与该样品体积之比。在SI制中其单位为Bq/L,它与CGS制中氡的浓度单位爱曼(em),有如下关系

勘查技术工程学

11.8.1.3 照射量

照射量X是度量射线所产生的电离效应的物理量。定义为X辐射或γ辐射使质量为dm的空气中释放出来的全部电子(电子和正电子)被空气阻止时,在空气中产生的同一种符号的离子的总电荷的绝对值dQ与dm之比,即X=dQ/dm。

照射量的单位在SI制中为C/kg(库仑/千克),过去曾用R(伦琴)为单位,两者的关系为

勘查技术工程学

应当指出,照射量X仅适用于空气介质中的X辐射或γ辐射,不能用于其他介质和其他辐射。

11.8.1.4 照射量率

照射量率是指单位时间的照射量,即=d X/d t。其SI制单位为C/(kg·s)[库仑/(千克·秒)]或 A/kg(安/千克)。在过去曾用 R/s(伦琴/秒)为单位,常用单位为 R/h(伦琴/小时)及其分数单位γ,1γ=10-6 R/h。两种单位的换算关系为

勘查技术工程学

照射量率与射线强度(单位时间内垂直入射到物质单位截面的射线能量)有近于正比的关系,因此照射量率也常用来衡量射线的强弱。

11.8.1.5 其他核物理量

① 计数率。指单位时间放射性仪器记录的脉冲数。单位为cps(脉冲/秒)或cpm(脉冲/分)。1 cpm=60 cps

② α粒子的径迹密度。指固体径迹探测器单位面积内的径迹数,单位为j/mm2。

11.8.2 标准源

核辐射测量工作要有一定的度量标准,为此必须制备一些已知放射性核素含量或照射量率的放射源作为衡量的基准,这种放射源就称为标准源。

标准源实际上就是装在特制容器内的具有一定质量的某种放射性物质。由于标准源是衡量的基准,必须准确可靠,所以制作时应采用半衰期很长的放射性物质。同时,还应事先了解制作标准源的放射性物质成分、含量、衰变过程、能谱成分等。

标准源可用来校正核测量仪器的灵敏度;标定仪器的测量数据,并将其换标成统一的照射量率单位;对比样品和标准源的照射量率,从而确定样品中放射性元素的含量。

按照物质形态,标准源有固体标准源、粉末标准源和液体标准源之分;按使用特点,又可将其分为射线标准源、射气标准源和含量标准源三类。

11.8.2.1 射线标准源

射线标准源是以其辐射的射线作为对比测量的基准。按射线的性质,可将射线标准源分为α射线标准源、β射线标准源、γ射线标准源和中子标准源四类。

从矿石中刚提炼出来的U3O8可作为α射线标准源。经过约1年的时间,238U与234Th、234Pa达到平衡后,由于234Th和234Pa都是β辐射体,这时该放射源可作为稳定的β射线标准源(须用吸收屏滤掉α射线)。除此之外,现在还广泛采用人工放射性核素作为α、β射线标准源。

经过提纯并与其衰变产物处于平衡的镭,在用吸收屏滤掉β射线后,可作为γ射线源。人工放射性核素60Co也可作为γ射线标准源。此外,137Cs、214Am、234Pu等可作为检查仪器的工作标准源。

中子标准源有钋-铍中子源、镭-铍中子源和锎中子源等。除锎中子源是通过自发裂变产生中子外,其余两种中子源都是利用钋或镭衰变产生的α粒子轰击铍核产生中子的。

11.8.2.2 射气标准源

射气标准源以其积累的射气浓度作为对比测量的基准。主要有氡气(222Rn)标准源和钍射气(220Rn)标准源两类。

氡气标准源由密封在玻璃容器中的镭盐溶液制成。溶液中的镭含量一般为10-6~10-11g/L。目前已有了固体镭盐制成的氡气标准源和标定测氡仪的标准源—氡室。钍射气标准源由钍化合物溶液装在特制的玻璃容器中制成,钍含量为1~10mg/L。

11.8.2.3 含量标准源

含量标准源是对比铀、钍、钾含量的标准源。用于室内放射性物理分析和野外γ能谱测量。主要由粉末状的铀、钍矿石及钾盐制成。

室内分析用的含量标准源包括铀标准源(钍质量分数

10. 海水放射性检测方法

根据日本政府以及国际海洋研究机构的监测数据显示,日本的鳕鱼没有受到明显的核污染影响。原因在于,福岛核事故后,日本政府及时采取了多项措施,包括监测海水、海洋生物和渔业产品等,以确保其比较安全性。此外,日本政府还制定了相关法律和规定,加强了对渔业及其产品的管理和监督。然而,需要注意的是,日本的某些其他海产品可能受到了一定程度的核污染,并且受到的影响程度因地点和时间而异。因此,在选择购买或食用海产品时,最好了解其产地、销售渠道及相关比较安全证书等信息,以确保食品比较安全。

顶一下
(0)
0%
踩一下
(0)
0%