返回首页

海洋生物仿生艺术(海洋生物仿生设计手绘图)

来源:www.shuishangwuliu.com   时间:2023-05-21 13:18   点击:188  编辑:jing 手机版

1. 海洋生物仿生设计手绘图

熊猫绘画推推是一款绘画软件,熊猫绘画软件专门为喜欢绘画和正在学习的朋友打造,熊猫绘画拥有丰富的仿生画笔、高级图层功能,熊猫绘画软件支持多人同时在线绘画,边画边聊,熊猫绘画app还有丰富的工具选择可以便捷创造。

拥有多种仿生画笔,可以模拟真实手绘效果,同时支持自定义笔刷。

高级图层功能,和多样可用滤镜,助你增强作品表现力。

茶绘功能支持多人在线同时创作,边聊边画,快乐摸鱼。

动画制作简单好玩,功能强大,容易上手。

2. 海洋生物仿生设计家具

海洋地板 2000W+

七彩门 约800W

海洋动画床 约400W

彩鱼毯/海之藏经阁/海洋桌子/凳子/海之明珠屏 约40W/个

海葵/海之明珠灯/海螺桶/海洋帘 25W/个

(房子带阁楼的顶级豪宅)

按1地板2扇门3个床,其他若干, 价值近8000W,

3. 海洋动物仿生设计作品

一、乌贼与侧壁气垫船

鱿鱼是一种神奇的海洋动物,被称为海洋火箭。它的最高时速可达150公里,这主要取决于它的结构简单和安全可靠的高速水射流推进器。它被模仿成一个侧壁气垫船,带有喷水推进器,每秒可达40米,能够在低于一米深的浅水中加速。

二、鱼儿与船

鱼有在水中自由移动的能力。人们模仿鱼的形状造船,用桨模仿鱼鳍。传说早在大禹时代,中国古代劳动人民就看到鱼用尾巴在水里荡来荡去,把木桨放在船尾。

经过反复的观察、模仿和实践,船舶逐渐变为橹和舵,提高了船舶的动力,掌握了船舶的转向手段。这样,即使在翻滚的河流中,人们也能使船只自由航行。

三、蝴蝶与卫星控温系统

当人造地球卫星在太空中受到强烈的阳光照射时,卫星上的各种精密仪器仪表很容易“烘烤”或“冻结”。蝴蝶的体表上长出一层薄薄的鳞片,用来调节体温。科学家们仿照蝴蝶翅膀的结构,为人造卫星的太阳能表面设计加载了一种和蝴蝶鳞片相仿的控温系统。

四、苍蝇与照相机

美国斯坦福大学电脑科学系华人博士生吴义仁,与几名研究员创制出手提“光场相机”又称蝇眼照相机。苍蝇的每只小眼能独立成像,并能迅速地分辨物体的形状和大小。

科学家模仿苍蝇的复眼,制成了“蝇眼”照相机。这种照相机的镜头由1329块小透镜组成。它还可以拍摄电影的特技画面,使电影产生神奇的效果。昆虫的复眼是由千万个小眼组成的,由于小眼之间的相互抑制,使眼具有突出影像的边框、增大清晰度的功能。

五、长颈鹿与宇航员

长颈鹿之所以能将血液通过长长的颈输送到头部,是由于长颈鹿的血压很高。据测定,长颈鹿的血压比人的正常血压高出2倍。这样高的血压为什么不会导致长颈鹿患脑溢血而死亡呢?这和长颈鹿身体的结构有关。长颈鹿血管周围的肌肉非常发达,能压缩血管,控制血流量。

科学家由此受到启示,在训练宇航员对,设置特殊器械,让宇航员利用这种器械每天锻炼,以防止宇航员血管周围肌肉退化;在宇宙飞船升空时,科学家根据长颈鹿利用紧绷的皮肤可控制血管压力的原理,研制了飞行服“抗荷服”。抗荷服上安有充气装置,随着飞船速度的增高,抗荷服可以充入一定量的气体。

4. 海洋生物仿生设计手绘图纸

不难学,智慧海洋这一门具有特色的通识教育课程。课程内容具有科普性和前沿性,以海洋知识和海洋技术内容为主,包括海洋生物、海洋资源与开发、水下机器人、海洋仿生、海洋遥感与测绘、海洋大数据、海洋互联、水下通信、海洋组网、海洋导航与定向、海洋工程、海洋地理、海洋文化、海洋经济、海洋污染、海洋旅游、海洋灾难、海洋军事、经略海洋等一系列相关内容。

5. 海洋生物仿生学

谁能想到鲨鱼能教给我们这么多知识呢?好几项仿生学发明都受到这种海洋生物的启发。

鲨鱼皮上有微小的、像牙齿一样的鳞片,可以防止涡流的形成,提高鲨鱼的游泳速度。Speedo公司把鲨鱼皮的这种构造用在了Fastskin泳衣上。穿上这种泳衣,游泳运动员可以把成绩提高至关重要的几秒。还有人把这种技术用在了轮船外壳上,防止水下生物附着,提高船只的航行速度。澳大利亚的生物动力系统(BioPower Systems)公司的研究也受到了鲨鱼的启发。该公司打算把根据鲨鱼体型设计的机械鳍安放在海浪中,以此实现水力发电。

6. 海洋仿生设计作品

人们在吃麻辣香锅、火锅时,除了放些天然肉,还喜欢往锅里配些鱼丸、虾丸、蟹棒等新型食品,可是一些虾丸、蟹棒却吃不出虾味、蟹味。

那么这些食物究竟是什么材料做的呢?   其实,鱼丸、虾丸、蟹棒产品都属于“仿生食品”。仿生食品是一种新型食品,就是用人工原料制作成类似天然食品口味的新型食品。目前产值最大的当属海洋仿生食品,一般是以低值鱼加工而成的鱼糜为主要原料,从形状、风味、营养上模仿天然海洋食品而加工制取。观察这类食品包装的标签上,我们发现,虾丸配料为鱼糜、淀粉、水、白砂糖等,有的含有虾粉,但是均不含虾肉;蟹棒成分基本是鱼糜、水、大豆蛋白、淀粉、食品添加剂,有的还有鸡肉和猪肉,但蟹肉是根本没出现在配料表上,而有些制品也只是在配料表上含糊地标着虾提取物或蟹提取物。  这类制品目前没有国家标准,企业在加工过程中,配料、成分等都是各行其是。一些生产者为了降低成本,通过增加食用胶(增稠剂如明胶、琼脂、卡拉胶、海藻酸钠)和淀粉用量,配以各种添加剂,来减少鱼糜原料的添加量甚至根本就不用,使海鲜丸成为了“丸子状的添加剂”,背离了仿生食品研发的初衷。  正规厂家生产的产品,配料中的添加剂在国家允许范围之内,应该不会有质量安全问题。但从营养学角度看,这些食品很多都是由淀粉类食物制成,若当做海鲜食物补充营养的话,其蛋白质等营养物质不仅没有获得补充,碳水化合物等却会摄入过多。仿生食品虽然味道鲜美,但能量高、营养价值无法和原生海洋食品相比拟,质量相差很远,消费者需要了解并认清仿生食品与原生食品的区别,虾丸、蟹棒等海洋仿生食品只是口味类似,但他们并不是真正的海鲜生物的制品,因此只能当成休闲调味品,不宜经常吃。

7. 海洋生物仿生产品设计

具有推进效率高﹑机动性能好﹑噪音低﹑隐藏性能高等特点,在海洋生物观察﹑军事侦察方面等发挥着重要作用。

8. 海洋生物仿生设计手绘图片

作为一门独立的学科,仿生学正式诞生于1960年9月。由美国空军航空局在俄亥俄州的空军基地戴通召开了第一次仿生学会议。

会议讨论的中心议题是“分析生物系统所得到的概念能够用到人工制造的信息加工系统的设计上去吗?”斯蒂尔为新兴的科学命名为“Bionics”,希腊文的意思代表着研究生命系统功能的科学,1963年我国将“Bionics”译为“仿生学”。

斯蒂尔把仿生学定义为“模仿生物原理来建造技术系统,或者使人造技术系统具有或类似于生物特征的科学”。简言之,仿生学就是模仿生物的科学。

确切地说,仿生学是研究生物系统的结构、特质、功能、能量转换、信息控制等各种优异的特征,并把它们应用到技术系统,改善已有的技术工程设备,并创造出新的工艺过程、建筑构型、自动化装置等技术系统的综合性科学。从生物学的角度来说,仿生学属于“应用生物学”的一个分支;从工程技术方面来看,仿生学根据对生物系统的研究,为设计和建造新的技术设备提供了新原理、新方法和新途径。仿生学的光荣使命就是为人类提供最可靠、最灵活、最高效、最经济的接近于生物系统的技术系统,为人类造福。

仿生学是独立的一门学科人类仿生的行为虽然早有雏型,但是在20世纪40年代以前,人们并没有自觉地把生物作为设计思想和创造发明的源泉。科学家对于生物学的研究也只停留在描述生物体精巧的结构和功能上。

而工程技术人员更多的依赖于他们的智慧,辛辛苦苦的努力,进行着人工发明。他们很少有意识的向生物界学习。但是,以下几个事实可以说明:人们在技术上遇到的某些难题,生物界早在千百万年前就曾出现,而且在进化过程中就已解决了,然而人类却没有从生物界得到应有的启示。

人类仿生的做法在第一次世界大战时期,出于军事上的需要,为使舰艇在水下隐蔽航行而制造出潜水艇。当工程技术人员在设计原始的潜艇时,是先用石块或铅块装在潜艇上使它下沉,如果需要升至水面,就将携带的石块或铅块扔掉,使艇身回到水面来。

以后经过改进,在潜艇上采用浮箱交替充水和排水的方法来改变潜艇的重量。以后又改成压载水舱,在水舱的上部设放气阀,下面设注水阀,当水舱灌满海水时,艇身重量增加使它潜入水中。需要紧急下潜时,还有速潜水舱,待艇身潜入水中后,再把速潜水舱内的海水排出。如果一部分压载水舱充水,另一部分空着,潜水艇可处于半潜状态。潜艇要起浮时,将压缩空气通入水舱排出海水,艇内海水重量减轻后潜艇就可以上浮。

如此优越的机械装置实现了潜艇的自由沉浮。但是后来发现鱼类的沉浮系统比人们的发明要简单得多,鱼的沉浮系统仅仅是充气的鱼鳔。鳔内不受肌肉的控制,而是依靠分泌氧气进入鳔内或是重新吸收鳔内一部分氧气来调节鱼鳔中气体含量,促使鱼体自由沉浮。

然而鱼类如此巧妙的沉浮系统,对于潜艇设计师的启发和帮助已经为时过迟了。声音是人们生活中不可缺少的要素。通过语言,人们交流思想和感情,优美的音乐使人们获得艺术的享受,工程技术人员还把声学系统应用在工业生产和军事技术中,成为颇为重要的信息之一。

自从潜水艇问世以来,随之而来的就是水面的舰船如何发现潜艇的位置以防偷袭;而潜艇沉入水中后,也须准确测定敌船方位和距离以利攻击。因此,在第一次世界大战期间,在海洋上,水面与水中敌对双方的斗争采用了各种手段。海军工程师们也利用声学系统作为一个重要的侦察手段。

首先采用的是水听器,也称噪声测向仪,通过听测敌舰航行中所发出的噪声来发现敌舰。只要周围水域中有敌舰在航行,机器与螺旋桨推进器便发出噪声,通过水听器就能听到,能及时发现敌人。但那时的水听器很不完善,一般只能收到本身舰只的噪声,要侦听敌舰,必须减慢舰只航行速度甚至完全停车才能分辨潜艇的噪音,这样很不利于战斗行动。

不久,法国科学家郎之万(1872~1946)研究成功利用超声波反射的性质来探测水下舰艇。用一个超声波发生器,向水中发出超声波后,如果遇到目标便反射回来,由接收器收到。根据接收回波的时间间隔和方位,便可测出目标的方位和距离,这就是所谓的声纳系统。人造声纳系统的发明及在侦察敌方潜水艇方面获得的突出成果,曾使人们为之惊叹不已。

岂不知远在地球上出现人类之前,蝙蝠、海豚早已对“回声定位”声纳系统应用自如了。生物在漫长的年代里就是生活在被声音包围的自然界中,它们利用声音寻食,逃避敌害和求偶繁殖。因此,声音是生物赖以生存的一种重要信息。意大利科学家斯帕拉捷很早以前就发现蝙蝠能在完全黑暗中任意飞行,既能躲避障碍物也能捕食在飞行中的昆虫,但是塞住蝙蝠的双耳、封住它的嘴后,它们在黑暗中就寸步难行了。面对这些事实,斯帕拉捷提出了一个使人们难以接受的结论:蝙蝠能用耳朵与嘴“看东西”。

它们能够用嘴发出超声波后,在超声波接触到障碍物反射回来时,用双耳接收到。第一次世界大战结束后,1920年,哈台认为蝙蝠发出声音信号的频率超出人耳的听觉范围。并提出蝙蝠对目标的定位方法与第一次世界大战时郎之万发明的用超声波回波定位的方法相同。遗憾的是,哈台的提示并未引起人们的重视,而工程师们对于蝙蝠具有“回声定位”的技术是难以相信的。直到1983年采用了电子测量器,才完完全全证实蝙蝠就是以发出超声波来定位的。但是这对于早期雷达和声纳的发明已经不能有所帮助了。

蝙蝠能用耳朵与嘴“看东西”另一个事例是人们对于昆虫行为为时过晚的研究。在利奥那多·达·芬奇研究鸟类飞行造出第一个飞行器400年之后,人们经过长期反复的实践,终于在1903年发明了飞机,使人类实现了飞上天空的梦想。由于不断改进,30年后人们的飞机不论在速度、高度和飞行距离上都超过了鸟类,显示了人类的智慧和才能。

但是在继续研制飞行更快更高的飞机时,设计师又碰到了一个难题,就是气体动力学中的颤振现象。当飞机飞行时,机翼发生有害的振动,飞行越快,机翼的颤振越强烈,甚至使机翼折断,造成飞机坠落,许多试飞的飞行员因而丧生。飞机设计师们为此花费了巨大的精力研究消除有害的颤振现象,经过长时间的努力才找到解决这一难题的方法。就在机翼前缘的远端上安放一个加重装置,这样就把有害的振动消除了。

可是,昆虫早在三亿年以前就飞翔在空中了,它们也毫不例外地受到颤振的危害,经过长期的进化,昆虫早已成功地获得防止颤振的方法。生物学家在研究蜻蜓翅膀时,发现在每个翅膀前缘的上方都有一块深色的角质加厚区——翼眼或称翅痣。如果把翼眼去掉,飞行就变得荡来荡去。实验证明正是翼眼的角质组织使蜻蜓飞行的翅膀消除了颤振的危害,这与设计师高超的发明何等相似。假如设计师们先向昆虫学习翼眼的功用,获得有益于解决颤振的设计思想,就可以避免长期的探索和人员的牺牲了。面对蜻蜓翅膀的翼眼,飞机设计师大有相见恨晚之感!

蜻蜓的翅膀对造飞机的启示以上这四个事例发人深省,也使人们受到了很大启发。早在地球上出现人类之前,各种生物已在大自然中生活了亿万年,在它们为生存而斗争的长期进化中,获得了与大自然相适应的能力。生物学的研究可以说明,生物在进化过程中形成的极其精确和完善的机制,使它们具备了适应内外环境变化的能力。生物界具有许多卓有成效的本领。

如体内的生物合成、能量转换、信息的接受和传递、对外界的识别、导航、定向计算和综合等,显示出许多机器所不可比拟的优越之处。生物的小巧、灵敏、快速、高效、可靠和抗干扰性实在令人惊叹不已。历史沿革仿生学是连接生物与技术的桥梁。自从瓦特(James Watt,1736~1819)在1782年发明蒸汽机以后,人们在生产斗争中获得了强大的动力。在工业技术方面基本上解决了能量的转换、控制和利用等问题,从而引起了第一次工业革命,各式各样的机器如雨后春笋般的出现,工业技术的发展极大地扩大和增强了人的体能,使人们从繁重的体力劳动解脱出来。

随着技术的发展,人们在蒸汽机以后又经历了电气时代并向自动化时代迈进。20世纪40年代电子计算机的问世,更是给人类科学技术的宝库增添了可贵的财富,它以可靠和高效的本领处理着人们手头上数以万计的各种信息,使人们从汪洋大海般的数字、信息中解放出来,使用计算机和自动装置可以使人们在繁杂的生产工序面前变得轻松省力,它们准确地调整、控制着生产程序,使产品规格精确。

但是,自动控制装置是按人们制定的固定程序进行工作的,这就使它的控制能力具有很大的局限性。自动装置对外界缺乏分析和进行灵活反应的能力,如果发生任何意外的情况,自动装置就要停止工作,甚至发生意外事故,这就是自动装置本身所具有的严重缺点。

要克服这种缺点,无非是使机器各部件之间,机器与环境之间能够“通讯”,也就是使自动控制装置具有适应内外环境变化的能力。要解决这一难题,在工程技术中就要解决如何接受、转换。利用和控制信息的问题。因此,信息的利用和控制就成为工业技术发展的一个主要矛盾。如何解决这个矛盾呢?生物界给人类提供了有益的启示。人类要从生物系统中获得启示,首先需要研究生物和技术装置是否存在着共同的特性。1940年出现的调节理论,将生物与机器在一般意义上进行对比。到1944年,一些科学家已经明确了机器和生物体内的通讯、自动控制与统计力学等一系列的问题上都是一致的。

9. 海洋生物仿生建筑设计

这种机器鱼是科学家们根据仿生学原理设计制造的,它们游动起来酷似真正的鲤鱼,身体在发动机的推动下来回摆动,并用鳍和尾来改变它们的游动方向,其游动速度可望达每秒半米。

它们将分别配备不同的传感器来探测不同的污染物,之后科学家再用这些数据绘制实时的水污染3D图,好让环保部门采取最好办法来清除这里的污染物。科学家表示,他们会让这些机器鱼充电一次就能在水中持续游动24小时。

美国华盛顿大学的研究人员已经成功地研制出三条机器鱼,在水中游泳时可互相交流。该机器鱼,就像真鱼一样,依靠鳍游泳。机器鱼还能追逐猎物,如漂流物或小鱼。机器鱼的后部有两片平行于水面的尾舵,随着尾舵转动,机器鱼可以上浮和下潜。还有一条竖直的尾鳍,用来保证平稳。机器鱼唯一的动力来自尾巴。这片尾巴,由后部伸出的一只机械臂带动。机器鱼模仿的是鲑鱼的动作。鲑鱼的划水动作看似简单,其实科学家需要利用专门的仿生学研究其轨迹,得出相应的算法,好指挥机械尾巴运动,做到尽量平滑。

10. 海洋动物仿生设计

仿生雷蛙的重量是不确定的。因为仿生雷蛙是一种仿生机器人,它们的重量因尺寸、材质等因素而异。不过一般来说,仿生雷蛙的重量是在几十克到数百克之间。 此外,仿生雷蛙的重量不仅与材质和尺寸有关,还与其功能和用途相关。比如,如果设计用于进行空中、水中等不同环境的探测、监测等任务,则需要更轻盈灵活的设计,因此重量也可能更轻。而如果是用于执行需要较大推力的任务,如水中搬运重物等,则重量可能更重。 总而言之,仿生雷蛙的重量不是一个固定的数值,需要根据具体情况来进行设计和制造。

顶一下
(0)
0%
踩一下
(0)
0%