1. 海洋有机物分类有哪些
海洋藻类是简单的光合营养的有机体,其形态构造、生活样式和演化过程均较复杂,介于光合细菌和维管束植物之间,在生物的起源和进化上占很重要的地位。
海洋种子植物的种类不多,只知有130种,都属于被子植物。
可分为红树植物和海草两类。
它们和栖居其中的其他生物,组成了海洋沿岸的生物群落。
海藻是生长在海中的藻类,是植物界的隐花植物,藻类包括数种不同类以光合作用产生能量的生物。它们一般被认为是简单的植物,主要特征为:无维管束组织,没有真正根、茎、叶的分化现象;不开花,无果实和种子;生殖器官无特化的保护组织,常直接由单一细胞产生孢子或配子;以及无胚胎的形成。海产藻类通常固著于海底或某种固体结构上,是基础细胞所构成的单株或一长串的简单植物。大量出现时分不出茎
2. 海洋有机生物
海肠学名单环刺螠,是一种海洋软体动物,通常个体长约10-30cm,宽约2.5-2.7cm,全身呈紫色或棕红色。
海肠在身体前端有一吻,匙状,可伸缩,有再生功能,用于捕食。主要食物是海洋小型底栖生物和有机颗粒。
3. 海洋中的有机物有什么作用
海洋食物链marinefoodchain 在海洋生物群落中,从植物、细菌或有机物开始,经植食性动物至各级肉食性动物,依次形成摄食者与被食者的营养关系称为食物链,亦称为“营养链”。食物网是食物链的扩大与复杂化,它表示在各种生物的营养层次多变情况下,形成的错综复杂的网络状营养关系。物质和能量经过海洋食物链和食物网的各个环节所进行的转换与流动,是海洋生态系中物质循环和能量流动的一个基本过程。 营养层次海洋浮游植物和底栖植物是最主要的初级生产者。它们为植食性动物,如钩虾(Gammarus)、哲水蚤(Calanus)等浮游甲壳动物,蛤仔(Ruditapes)、鲍(Haliotis)等软体动物,鲻(Muilcephalus)、遮目鱼(Chanos)等鱼类,提供食料。植食性动物为一级肉食性动物所食,如海蜇(Rhopilema)、箭虫(Saitta)、海星、对虾(Penaeus)、许多鱼类、须鲸(Balaenoptera)等。一级肉食性动物又为二级肉食性动物(大型鱼类和大型无脊椎动物)所食。随后,它们再被三级肉食性动物(凶猛鱼类和哺乳动物)所食。依此构成食物链,食物链中的各个生物类群层次,叫做营养层次。 类别海洋中的初级生产者——海洋植物,很大部分不是直接被植食性动物所食用,而是死亡后被细菌分解为碎屑,然后再为某些动物所利用。因此,如同在陆地上和淡水中的情况,在海洋生态系中也存在着相互平行、相互转化的两类基本食物链:一类是以浮游植物和底栖植物为起点的植食食物链,另一类是以碎屑为起点的碎屑食物链。 海洋中无生命的有机物质除以碎屑形式存在外,还有大量的溶解有机物,其数量比碎屑有机物还要多好几倍。它们在一定条件下可形成聚集物,成为碎屑有机物,而为某些动物所利用。所以,在海洋生态系的物质循环和能量流动中,碎屑食物链的作用不一定低于植食食物链。 此外,在海域中还存在一条腐食食物链。它以营腐生生活的细菌和以化学能合成的细菌为起点,在海洋生态系中也有一定的作用。 特点海洋食物链较长,经常达到4~5级。而陆生食物链通常仅有2~3级,很少达到4~5级。海洋食物链的许多环节是可逆的、多分枝的,加上碎屑食物链、植食食物链和腐食食物链相互交错,网络状的营养关系比陆地的更多样、更复杂。因此,在海洋中用食物网更能确切表达海洋生物之间的营养关系。 物质和能量的传递食物链只表示有机物质和能量从一种生物传递到另一种生物中的转移与流动方向,而不表示每一营养层次所需的有机物和能量的数量(即生物量和热量)。这些量的大小须视不同摄食者对所摄食食物的实际利用效率,或者说依被食者向摄食者的转换效率而定。从图[食物链转换效率示意图]中可以看出磷虾为所食时转换效率接近10%,为所食时为7%左右,而为鲐所食时则为4%左右。这说明同一种饵料由于摄食者不同,转换效率也不同。其次,鲐摄食磷虾的效率为4%左右,若中间经过的环节,按磷虾→→鲐这一条食物链流动的情形几乎约低半个以上的数量级。 可见食物链每升高一个层次,有机物质和能量就要有很大的损失。食物链的层次越多,总体效率就越低。因此,从初级生产者浮游植物、底栖植物或碎屑算起,处于食物链层次越高的动物,其相对数量越少;相反,处于食物链层次越低的动物,其相对数量越多。这便构成了生物量金字塔和能量金字塔。 食物网在自然界中,一种生物往往摄食多种生物,而它本身也为多种生物所食。因而每种生物在一个海域中是处于不同食物链的不同环节,或者说处于不同的营养层次之中。这样,整个海域中各种生物彼此之间的食物关系,就成了一个错综复杂的网络结构。事实上,同一种鱼也依其发育生长阶段、季节和所在海域的不同,其饵料也各异,因而食物网的结构是可变的
4. 由海洋有机
1、红树林生态系统。红树林是热带、亚热带、海岸带、海陆交错区生产能力最高的海洋生态系统之一,在净化海水、防风消浪、维持生物多样性、固碳储碳等方面发挥着极为重要的作用。
2、盐沼生态系统。盐沼是受周期性潮汐运动影响,覆盖有草本植物的滨海或岛屿边缘区域的滩涂。
3、海草床生态系统。海草床是中、低纬度海域潮间带中、下区和低潮线以下数米乃至数十米浅水区海生显花植物(海草)和草栖动物繁茂的平坦软相地带。
4、海藻场生态系统。沿岸潮间带下区和潮下带水深30米以内,浅硬质底区的大型底栖藻类与其他海洋生物群落共同构成的一种典型近岸海洋生态系统,广泛分布于冷温带以及部分热带和亚热带海岸。
5、珊瑚礁生态系统。由活珊瑚、死亡珊瑚的骨骼及其它礁区生物共同堆积组成的聚集体。
5. 海洋有机物形成的化石
生物体上的硬组织也能被保存下来。差不多所有的植物和动物都拥有一些硬部分,例如蛤、蚝或蜗牛;脊椎动物的牙和骨头;蟹的外壳和能够变成化石的植物的木质组织。生物体的坚硬部分由于是以能抵抗风化作用和化学作用的物质构成的,所以这类化石分布的较普遍。无脊椎动物例如蛤、蜗牛和珊瑚等的壳是由方解石(碳酸钙)组成的,其中很多没有或几乎没有发生物理变化而被保存下来。 脊椎动物的骨头和牙以及许多无脊椎动物的外甲含有磷酸钙,因为这种化合物抵抗风化作用的能力非常强,所以许多由磷酸盐组成的物质也能保存下来,如曾发现一枚保存极好的鱼牙。由硅质(二氧化硅)组成的骨骼也具有这种性质。微体古生物化石的硅质部分和某些海绵通过硅化而变成化石。另一些有机物具有几丁质(一种类似于指甲的物质)的外甲,节足动物和其它有机物的几丁质外甲可以成为化石,由于 它的化学成分和埋葬的方式,使这种物质以碳的薄膜的形式而保存下来。 碳化作用(或蒸馏作用)是生物埋葬之后在缓慢腐烂的过程中发生的,在分解过程中,有机物逐渐失去所含有的气体和液体成分,仅留下碳质薄膜。这种碳化作用和煤的形成过程相同。在许多煤层中可以看到大量的碳化植物化石。在许多地方,植物、鱼和无脊椎动物就是以这种方式保存下它们的化石。有些碳的薄膜精确地记录了这些生物的最精细的结构。 化石还可以通过矿化作用和石化作用而保存下来。 当含矿化的地下水把矿物沉淀于生物体的坚硬部分所在的空间时,使得生物的坚硬部分变得更坚硬、抵抗风化作用的能力更强。较普通的矿物有方解石、二氧化硅和各种铁的化合物。所谓置换作用或矿化作用是生物体的坚硬部分被地下水溶解,与此同时其它物质在所空出来的位置上沉淀下来的过程。有些置换形成的化石的原始结构被置换的矿物所破坏。 不仅动植物的遗体能形成化石,而且表明它们曾经存在过的证据或踪迹也都能形成化石。痕迹化石能提供有关该生物特点的相当多的情况。很多壳、骨、叶以及生物的其它部分,都能以阳模和阴模的形式保存下来。如果一个贝壳在沉积物硬化成岩之前就被压入海底,它的外表特征就会留下压印(阴模)。如果阴模后来又被另外一种物质充填,就形成阳模。阳模能显示出贝壳本来的外部特征。外部阴模显示的是生物体硬部分的外部特征,内部阴模显示的是生物体坚硬部分的内部特征。
6. 海洋中有机物的分类
是的和人类一样生活的丰富多彩。
一、收缩爬行:海参
运动方式犹如腹足类那样的“定向单趋型”运动,其运动方式为尺蠖似的匍匐运动。即开始运动时,首先充分地伸展身体,然后因其体后部开始收缩,尾部前进,体后部的收缩犹如波浪式的波及到体前部。同时附着在基质上的管足从后部开始按顺序向前离开附着物,并在体前端稍后处附着,再以此作为基点,体前部向前方延伸,依这样的动作反复进行。
二、反冲:乌贼
乌贼的身体侧面有很多孔,前面还有一个形状奇特的漏斗。乌贼通过身体侧面的孔和前面的漏斗把水吸进腮腔内,然后又通过漏斗把水排出体外。这样,它的身体就得到了从后面推动的力量,从而快速向前移动。
三、游动:鱼类
利用躯干和尾部肌肉的收缩使身体左右反复扭曲,压迫水向后而促使身体前进,靠鳍的摆动拨水前进,利用鳃孔向后喷水的冲力使身体前进。
四、直立游泳:海马
海马经常生活在珊瑚丛或海藻丛附近,也有的生活在海底岩石的附近,由于它游动非常缓慢,所以很容易被别的鱼捕食。为了保护自己,海马就采用了一种很奇怪的姿势来游泳:直立游动。
五、浮游:水母
通过收缩外壳挤压内腔的方式,改变内腔体积,喷出腔内的水,通过喷水推进的方式进行移动。还有就是跟着水流进行漂流。
7. 海水中有机物分类
海缸有机物低的表现,就是鱼肚子翻到上面去。
有机盐与一般所谓的营养盐(PO4,NO3,SiO2)是完全不一样的物质相同的地方是两者(部分有机物)都能结合钙、镁、钾等物质为生物所吸收。
排除缸中的鱼便便、珊瑚等所代谢的物质。
经常更换白棉(非溶解性)白棉主要为滤除固态非溶解的物质,如果不经常更换就会渐渐变成溶解性有机物。
8. 海洋有机物分类有哪些种类
共13个门,1万多种。海洋植物可以简单地分为两大类:低等的藻类植物和高等的种子植物。
一,藻类植物:简单的光合营养的有机体,其形态构造、生活样式和演化过程均较复杂。它们介于光合细菌和高等植物--维管束植物之间,在生物的起源和进化上占有极为重要的地位。
二,种子植物:海洋种子植物的种类不多,都属于被子植物。通常分为红树植物和海草两类。它们和栖居的多种生物,组成沿岸生物群落。
1)红树植物:全世界已知的红树植物共有18科23属80种,分别隶属于双子叶植物纲和单子叶植物纲。分别为乔木和灌木,为了防止海浪冲击,红树植物的主干一般不无限增长,而从主干上长出多数支持根,扎入泥滩,以保持植株的稳定。同时,从根部长出许多指状的气生根露出于海滩地面,在退潮时甚至潮水淹没时用以通气。
2)海草:海草类一般:①有发育良好的根状茎(水平方向的茎),在附着基上交织生长以巩固植体,进而形成海草场。②叶片柔软,呈带状或切面构造为圆柱状,以便在海水流动时保持直立;叶片内部有规则排列的气腔,以便于漂浮和进行气体交换。③花着生于叶丛的基部,雄蕊(花药)和雌蕊(花柱和柱头)高出花瓣以上;花粉一般为念珠形且粘结成链状,以借海水的流动受粉。
9. 海洋有机物分类有哪些类型
海底每一层都有不同的动物群落,它们之间有紧密的联系。首先,在浅海的海底,我们可以找到珊瑚礁生态系统,其中包含各种鱼类、贝类和海胆等底栖动物,它们共同建立生态平衡。而在深海的海底,生物数量相对较少,但却有许多独特的生物种类,如深海鱼类、巨型蛸、底栖的深海鲍鱼、海蜗牛等,它们适应了深海环境的高压、低温和极端黑暗等极端环境。此外,海底每一层的动物群落都受到共同的生态环境因素的影响,如水温、光照、水分、氧气等,它们之间形成了复杂的生态关系,如食物链、生态竞争和共生关系等。因此,海底每一层都有独特的动物群落和生态环境因素的影响,并且它们之间有着密切的联系和作用。