1. 超巨星有没有海洋星
星系英文名称:galaxy定义:通常由几亿至上万亿颗恒星以及星际物质构成、空间尺度为几千至几十万光年的天体系统。所属学科:天文学(一级学科);星系和宇宙(二级学科)星系一词源自于希腊文中的galaxias(γαλαξ?α?),参考我们的银河系,是一个包含恒星、气体的星际物质、宇宙尘和暗物质,并且受到重力束缚的大质量系统。典型的星系,从只有数千万(107)颗恒星的矮星系到上兆(1012)颗恒星的椭圆星系都有,全都环绕着质量中心运转。除了单独的恒星和稀薄的星际物质之外,大部分的星系都有数量庞大的多星系统、星团以及各种不同的星云。星系
历史上,星系是依据它们的型状分类的(通常指它们视觉上的形状)。最普通的是椭圆星系,有着椭圆形状的明亮外观;螺旋星系是圆盘的形状,加上弯曲尘埃的旋涡臂;形状不规则或异常的,通常都是受到邻近的其它星系影响的结果。邻近星系间的交互作用,也许会导致星系的合并,或是造成恒星大量的产生,成为所谓的星爆星系。缺乏有条理结构的小星系则会被称为不规则星系。在可以看见的可观测宇宙中,星系的总数可能超过一千亿(1011)个以上。大部分的星系直径介于1,000至100,000秒差距,彼此间相距的距离则是百万秒差距的数量级。星系际空间(存在于星系之间的空间)充满了极稀薄的电浆,平均密度小于每立方公尺一个原子。多数的星系会组织成更大的集团,成为星系群或团,它们又为聚集成更大的超星系团。这些更大的集团通常被称为薄片或纤维,围绕在宇宙中巨大的空洞周围。虽然我们对暗物质的了解很少,但在大部分的星系中它都占有大约90%的质量。观测的数据显示超重黑洞存在于星系的核心,即使不是全部,也占了绝大多数,它们被认为是造成一些星系有着活跃的核心的主因。银河系,我们的地球和太阳系所在的星系,看起来在核心中至少也隐藏着一个这样的物体。[1]?
编辑本段特征
星系大小差异很大。椭圆星系直径在3300光年到49万光年之间;漩涡星系直径在1.6万光年到16万光年之间;不规则星系直径大约在6500光年到2.9万光年之间。星系的质量一般在太阳质量的100万到1兆倍之间。星系内部的恒星在运动,而星系本身也在自转,整个星系也在空间运动。传统上,天文学家认为星系的自转,顺时针方向和逆时针方向的比率是相同的。但是根据一个星系分类的分布式参与项目Galaxyzoo的观察结果,逆时针旋转的星系更多一些。星系具有红移现象,说明这些星系在空间视线方向上正在离我们越来越远。这也是大爆炸理论的一个有力证据。星系在大尺度的分布上是接近均匀的;但是小尺度上来看则很不均匀。例如大麦哲伦星系和小麦哲伦星系组成双重星系,它们又和银河系组成三重星系。
编辑本段观测简史
对我们自己的银河系和其它星系的调查开始于詹姆斯?毕倪和迈克尔?马黎?费尔德的报告书:星系天文学(Galacticastronomy)。
发现
在1610年,伽利略使用他的望远镜研究天空中明亮的带状物,也就是当时所知的银河,并且发现它是数量庞大但光度暗淡的恒星聚集而成的。在1755年的一篇论文,伊曼纽尔?康德,借鉴更早期由托马斯?怀特工作完成的素描图,推测(正确的)星系可能是由数量庞大的恒星转动体,经由重力的牵引聚集在一起,就如同我们的太阳系,只是规模更为庞大。恒星聚集成盘状,我们由盘内透视的效果,将会看成一条在夜空中的光带。康德也猜想某些在夜空中看见的星云可能是独立的星系。
区分星系主要分成三类:椭圆星系、螺旋星系和不规则星系。对星系类型更明确与广泛的描述会在哈柏序列的条目中叙述。因为哈柏序列是根据视觉的型态,他也许会错过某些星系的重要特征,例如恒星形成率(在星爆星系或活跃星系的核心)。根据哈柏分类法,星系的类型E表示椭圆星系,S是螺旋星系,SB是棒旋星系。
椭圆星系
哈柏分类法根据椭圆星系椭率的估计进行分类,从E0,接近圆形的,到E7,非常瘦长的。这些星系,不论视线的角度是如何,都有着椭圆形的外观。她们看似没有任何的结构,而且相对来说星际物质的成分也很少。通常这些星系会有少量的疏散星团和少量新形成的恒星,取而代之的是老年的,与以各种不同方向环绕星系的中心,已经成熟的恒星为主。她们的一些性质类似小了许多的球状星团。“哈勃深空”照片
大部分的星系都是椭圆星系,许多椭圆星系相信是经由星系的交互作用,碰撞或是合并,产生的。她们可以长成极大的体积(与螺旋星系比较)而且巨大的椭圆星系经常出现在星系群的中心区域。星爆星系是星系碰撞后的结果,可能导致巨大椭圆星系的形成。类型椭圆星系分为七种类型,按星系椭圆的扁率从小到大分别用E0-E7表示,最大值7是任意确定的。该分类法只限于从地球上所见的星系外形,原因是很难确定椭圆星系在空间中的角度。不规则星系没有一定的形状,而且含有更多的尘埃和气体,用Irr表示。另有一类用S0表示的透镜型星系,表示介于椭圆星系和旋涡星系之间的过渡阶段的星系。属E0型椭圆星系的NGC4552。该星系位于室女座。NGC4486,同样位于室女座,属E1型椭圆星系。NGC4479属于E4型椭圆星系,位于室女座。NGC205椭圆星系,属于E6型,位于仙女座。位于六分仪座的NGC3115,属E7型椭圆星系,也有把它归为S0型的。
螺旋星系
在螺旋星系,螺旋臂的形状近似对数螺线,在理论上显示这是大量恒星一致转动造成的一种干扰模式。像恒星一样,螺旋臂也绕着中心旋转,但是旋转的角速度并不是常数,这意味着恒星会穿越过螺旋臂,螺旋臂则是高密度区或是密度波。当恒星进入螺旋臂,他们会减速,因而创造出更高的密度;这就类似波将在高速公路上的车速延缓一样。螺旋臂能被看见,是因为高密度促使恒星在此处诞生,因而螺旋臂上有许多明亮和年轻的恒星。我们自己的星系,银河系,有时就简称为银河,是一个有巨大星系盘的棒旋星系,直径大约三万秒差距或是十万光年,厚度则约为三千光年;拥有约三千亿颗恒星(3×1011)和大约六千亿颗太阳的质量。
旋涡星系
(SpiralGalaxy,S-typeGalaxy)具有旋涡结构的河外星系称为旋涡星系,在哈勃的星系分类中用S代表.螺旋星系的螺旋形状,最早是在1845年观测猎犬座星系M51时发现的.螺旋星系的中心区域为透镜状,周围围绕着扁平的圆盘.从隆起的核球两端延伸出若干条螺线状旋臂,叠加在星系盘上.螺旋星系可分为正常漩涡星系和棒旋星系两种.按哈勃分类,正常漩涡星系又分为a、b、c三种次型:Sa型中心区大,稀疏地分布着紧卷旋臂;Sb型中心区较小,旋臂较大并较开展;Sc型中心区为小亮核,旋臂大而松弛。除了旋臂上集聚高光度O、B型星、超巨星、电离氢区外,同时还有大量的尘埃和气体分布在星系盘上。从侧面看在主平面上呈现为一条窄的尘埃带,有明显的消光现象。漩涡星系通常有一个笼罩整体的、结构稀疏的晕,叫做星系晕。其中主要是星族Ⅱ天体,其典型代表是球状星团。一个中等质量的漩涡星系往往有100~300个球状星团。随机地散布在星系盘周围空间。在往外,可能还有更稀疏的气体球,称为星系晕。漩涡星系的质量为十亿到一万亿个太阳质量,对应的光度是绝对星等-15~-21等。直径范围是5~50Kpc。Sa型星系的总光谱型为K,Sb型为F~K,Sc型为A~F。产生总光谱的主要天体既有高光度早型星,又有高光度晚型星。星族Ⅰ天体组成星系盘和旋臂,星族Ⅱ天体主要构成星系核、星系晕和星系冕。
棒旋星系
(BarredSprialGalaxy,SB-typeGalaxy)棒旋星系是中心呈长棒形状的螺旋形星系,一般的螺旋形星系的中心是有圆核的,而棒旋形星系的中心是棒形状,棒的两边有旋形的臂向外伸展。旋涡星系,分为两族,一族是中央有棒状结构的棒旋星系,用SB表示;另一种是无棒状结构的旋涡星系,用S表示。这两类星系又分别被细分为三个次型,分别用下标a、b、c表示星系核的大小和旋臂缠绕的松紧程度。最完美的环状星系
类型:位于狮子座的NGC3623,属Sa型旋涡星系。属Sb型的NGC3627旋涡星系,位于狮子座。NGC3351位于狮子座,属SBb型棒旋星系。SBc型棒旋星系NGC3992,位于狮子座。
矮星系
球状星团半人马座尽管椭圆星系和螺旋星系是很明显与突出的,宇宙中大部分的星系都是矮星系,这些微小的星系都不到银河系百分之一的大小,只拥有数十亿颗的恒星。许多矮星系可能都会环绕着单独的大星系运转,我们的银河至少就有一打这样的矮星系。矮星系依样可以分成椭圆、螺旋和不规则。因为矮椭圆星系外观上与大的椭圆星系有一点相似,因此她们经常被称为矮球状星系来取代。类型猎犬座的NGC5194旋涡星系,属Sc型。左侧是一个矮星系。
活跃星系
有部分我们观察到的星系被分类为活跃星系,也就是说,来自星系的总能量除了恒星、尘埃和星际介质之外,还有另一个重要的来源。像这样的活跃星系核的标准模型,根据能量的分布,认为是物质掉落入位在核心区域的超重质量黑洞造成的。以X射线的形式,辐射出高能量的星系被分类为赛弗特星系、类星体、或蝎虎BL类星体。从由核心喷发出的相对喷流发射出无线电频率的活跃星系被分类为无线电星系。在统一场论的星系模型中,这些不同类的星系被解释为从不同角度观察所得到的结果。
不规则星系
不规则星系(IrregularGalaxy,Irr-typeGalaxy)外形不规则,没有明显的核和旋臂,星系
没有盘状对称结构或者看不出有旋转对称性的星系,用字母Irr表示。在全天最亮星系中,不规则星系只占5%。按星系分类法,不规则星系分为IrrI型和IrrII型两类。I型的是典型的不规则星系,除具有上述的一般特征外,有的还有隐约可见不甚规则的棒状结构。它们是矮星系,质量为太阳的一亿倍到十亿倍,也有可高达100亿倍太阳质量的。它们的体积小,长径的幅度为2~9千秒差距。星族成分和Sc型螺旋星系相似:O-B型星、电离氢区、气体和尘埃等年轻的星族I天体占很大比例。II型的具有无定型的外貌,分辨不出恒星和星团等组成成分,而且往往有明显的尘埃带。一部分II型不规则星系可能是正在爆发或爆发后的星系,另一些则是受伴星系的引力扰动而扭曲了的星系。所以I型和II型不规则星系的起源可能完全不同。类型银河系的卫星系“大麦哲伦云”,属不规则星系。NGC3034不规则星系,位于大熊星座。
编辑本段大尺度结构
非常少数的星系是单独存在的,这些通常都被认为是视场星系。许多星系和一定数量的星系之间有重力的束缚。包含有50个左右星系的集团叫做星系群,更大的包含数千个星系,横跨数百万秒差距空间的叫做星系集团。星系集团通常由一个巨大的椭圆星系统治着,他的潮汐力会摧毁邻近的卫星星系,并将质量加入星系中。超星系集团是巨大的集合体,拥有数万个星系,其中有星系群、星系集团和一些孤单的星系;在超星系集团尺度,星系汇排列成薄片状和细丝,环绕着巨大的空洞。在上述的尺度中,宇宙呈现出各向同性和均质。我们的银河是本星系群中的一员,相对来说是一个直径大约1022百万秒差距的小星系群。银河和仙女座星系是这个群中最大的两个星系,许多其它的矮星系都是这两个的卫星星系。本星系群是以室女座星系团为中心的巨大星系群与星系集团集合体的一部分。星系在宇宙中呈网状分布。从大尺度看,星系包围着一个个像气泡一样的空白区域,在整体上形成类似蜘蛛网或神经网络的结构,称之为宇宙大尺度分布。
编辑本段形成和演化
星系的形成
星系之形成和演化向来都众说纷纭,有些已经被广泛接受,但仍然有不少人质疑。SB是棒旋星系
星系的形成包含了两方面,一是上下理论,二是下上理论。上下理论是指:星系乃由一次宇宙大爆炸中形成,发生在数亿年前。另一个学说则是指:星系乃由宇宙中旳微尘所形成。原本宇宙有大量的球状星团(globularcluster),后来这些星体相互碰撞而毁灭,剩下微尘。这些微尘经过组合,而形成星系。虽然在今时今日,关于星系形成的学问有不少人质疑,但大抵在星系形成研究方面,随着研究的深入,已伸展至星系演化方面。在天文物理学中,有关星系形成和演化的问题有:?在一个均质的宇宙中,我们是否居住在一个独特而与众不同的场所??星系是如何形成的??星系是如何随着时间改变的?
星系的演化
“哈勃深空”照片按照宇宙大爆炸理论,第一代星系大概形成于大爆炸发生后十亿年。在宇宙诞生的最初瞬间,有一次原始能量的爆发。随着宇宙的膨胀和冷却,引力开始发挥作用,然后,幼年宇宙进入一个称为“暴涨”的短暂阶段。原始能量分布中的微小涨落随着宇宙的暴涨也从微观尺度急剧放大,从而形成了一些“沟”,星系团就是沿着这些“沟”形成的。哈勃太空望远镜拍摄的遥远的年轻星系照片,其中包含有正在形成中的星系团(原星系)。十八个正在形成中的星系团的单独照片。每个团快距地球约一百十亿光年。著名的“哈勃深空”照片。展示了一千多个在宇宙形成后不到十亿年内形成的年轻星系。哈勃深空图片。箭头所指的可能是迄今为止发现的最遥远的星系。阿贝尔2218星系群。照片反映了宇宙中的“引力透镜”现象。两个相邻的星系NGC1410、NGC1409因引力作用而互相吸取物质。位于后发座的NGC
随着暴涨的转瞬即逝,宇宙又回复到如今日所见的那样通常的膨胀速率。在宇宙诞生后的第一秒钟,随着宇宙的持续膨胀冷却,在能量较为“稠密”的区域,大量质子、中子和电子从背景能量中凝聚出来。一百秒后,质子和中子开始结合成氦原子核。在不到两分钟的时间内,构成自然界的所有原子的成分就都产生出来了。大约再经过三十万年,宇宙就已冷却到氢原子核和氦原子核足以俘获电子而形成原子了。这些原子在引力作用下缓慢地聚集成巨大的纤维状的云。不久,星系就在其中形成了。大爆炸发生过后十亿年,氢云和氦云开始在引力作用下集结成团。随着云团的成长,初生的星系即原星系开始形成。那时的宇宙较小,各个原星系之间靠得比较近,因此相互作用很强。于是,在较稀薄较大的云中凝聚出一些较小的云,而其余部分则被邻近的云所吞并。同时,原星系由于氢和氦的不断落入而逐渐增大。原星系的质量变得越大,它们吸引的气体也就越多。一个个云团各自的运动加上它们之间的相互作用,最终使得原星系开始缓慢自转。这些云团在引力的作用下进一步坍缩,一些自转较快的云团形成了盘状;其余的大致成为椭球形。这些原始的星系在获得了足够的物质后,便在其中开始形成恒星。这时的宇宙面貌与今天便已经差不多了。星系成群地聚集在一起,就像我们地球上海洋中的群岛一样镶嵌在宇宙空间浩瀚的气体云中,这样的星系团和星系际气体伸展成纤维状的结构,长度可以达到数亿光年。如此大尺度的星系的群集在广阔的空间呈现为球形。
编辑本段区别和定义
星系:在茫茫的宇宙海洋中,千姿百态的“岛屿”,星罗棋布,上面居住着无数颗恒星和各种天体,天文学上称为星系。我们居住的地球就在一个巨大的星系——银河系之中。在银河系之外的宇宙中,像银河这样的太空巨岛还有上亿个,它们统称为河外星系。星团:在银河系众多的恒星中,除了以单个的形式,或组成双星、聚星的形式出现外,也有以更多的星聚集在一起的。星数超过10颗以上,彼此具有一定联系的恒星集团,称为星团。使这些恒星团结在一起的是引力。星团的成员多的可达几十万颗。它们又可以分成疏散星团和球状星团两类。银河系中遍布着星团,只是不同的地方星团的种类也不同。星云:星云是一种由星际空间的气体和尘埃组成的云雾状天体。星云中的物质密度是非常低的。如果拿地球上的标准来衡量,有些地方几乎就是真空。但星云的体积非常庞大,往往方圆达几十光年。因此,一般星云比太阳还要重得多。星云的形状千姿百态。有的星云形状很不规则,呈弥漫状,没有明确的边界,叫弥漫星云;有的星云像一个圆盘,淡淡发光,很像一个大行星,所以称为行星状星云。
编辑本段星系的演化
按照宇宙大爆炸理论,第一代星系大概形成于大爆炸发生后十亿年。在宇宙诞生的最初瞬间,有一次原始能量的爆发。随着宇宙的膨胀和冷却,引力开始发挥作用,然后,幼年宇宙进入一个称为“暴涨”的短暂阶段。原始能量分布中的微小涨落随着宇宙的暴涨也从微观尺度急剧放大,从而形成了一些“沟”,星系团就是沿着这些“沟”形成的。哈勃太空望远镜拍摄的遥远的年轻星系照片,其中包含有正在形成中的星系团(原星系)。十八个正在形成中的星系团的单独照片。每个团快距地球约一百十亿光年。著名的“哈勃深空”照片。展示了一千多个在宇宙形成后不到十亿年内形成的年轻星系。哈勃深空图片。箭头所指的可能是迄今为止发现的最遥远的星系。阿贝尔2218星系群。照片反映了宇宙中的“引力透镜”现象。两个相邻的星系NGC1410、NGC1409因引力作用而互相吸取物质。不规则星系大麦哲伦云
随着暴涨的转瞬即逝,宇宙又回复到如今日所见的那样通常的膨胀速率。在宇宙诞生后的第一秒钟,随着宇宙的持续膨胀冷却,在能量较为“稠密”的区域,大量质子、中子和电子从背景能量中凝聚出来。一百秒后,质子和中子开始结合成氦原子核。在不到两分钟的时间内,构成自然界的所有原子的成分就都产生出来了。大约再经过三十万年,宇宙就已冷却到氢原子核和氦原子核足以俘获电子而形成原子了。这些原子在引力作用下缓慢地聚集成巨大的纤维状的云。不久,星系就在其中形成了。大爆炸发生过后十亿年,氢云和氦云开始在引力作用下集结成团。随着云团的成长,初生的星系即原星系开始形成。那时的宇宙较小,各个原星系之间靠得比较近,因此相互作用很强。于是,在较稀薄较大的云中凝聚出一些较小的云,而其余部分则被邻近的云所吞并。同时,原星系由于氢和氦的不断落入而逐渐增大。原星系的质量变得越大,它们吸引的气体也就越多。一个个云团各自的运动加上它们之间的相互作用,最终使得原星系开始缓慢自转。这些云团在引力的作用下进一步坍缩,一些自转较快的云团形成了盘状;其余的大致成为椭球形。这些原始的星系在获得了足够的物质后,便在其中开始形成恒星。这时的宇宙面貌与今天便已经差不多了。星系成群地聚集在一起,就像我们地球上海洋中的群岛一样镶嵌在宇宙空间浩瀚的气体云中,这样的星系团和星系际气体伸展成纤维状的结构,长度可以达到数亿光年。如此大尺度的星系的群集在广阔的空间呈现为球形。
编辑本段术语
1、椭圆星系:呈椭圆形,没有悬臂结构。其中又分为:E0,E1……E7,数字越大,星系越扁2、漩涡星系(1)核心部分为椭圆形:Sa,Sb,Sc(2)出现棒状结构:SBa,SBb(3)透镜星系:介于E与Sa之间:SO3、不规则星系Irr1(罗马数字):颜色偏蓝Irr2(罗马数字):颜色偏黄
编辑本段银河系
在没有灯光干扰的晴朗夜晚,如果天空足够黑,你可以看到在天空中有一条弥漫的光带。这条光带就是我们置身其内而侧视银河系时所看到的它布满恒星的圆面——银盘。银河系内有约两千多亿颗恒星,只是由于距离太远而无法用肉眼辩认出来。由于星光与星际尘埃气体混合在一起,因此看起来就球状星团半人马座
像一条烟雾笼罩着的光带。银河系的中心位于人马座附近。银河系是一个中型恒星系,它的银盘直径约为十二万光年。它的银盘内含有大量的星际尘埃和气体云,聚集成了颜色偏红的恒星形成区域,从而不断地给星系的旋臂补充炽热的年轻蓝星,组成了许多疏散星团或称银河星团。已知的这类疏散星团约有一千两百多个。银盘四周包围着很大的银晕,银晕中散布着恒星和主要由老年恒星组成的球状星团。天鹅-人马座方向的银河。辉煌的银河系中心(银核)部分。辉煌的银河系中心(银核)部分II。织女、牵牛星-人马座方向的银河。天鹰-人马座方向的银河。长盾-人马座方向的银河。从我们所处的角度很难确切地知道银河系的形状。但随着近代科技的发展,探测手段的进步在某种程度上克服了这些障碍,揭示出银河系具有的某些出人意料的特征。长期以来人们一直以为银河系是一个典型的旋涡星系,与仙女座星系类似。但最近的观测却发现,它的中央核球稍带棒形。这意味着银河系很可能是一种棒旋星系。另外,银河系是一个比较活跃的星系,银核有强烈的宇宙射线辐射,在那里恒星以高速围绕着一个不可见的中心旋转。这表明在银河系的核心有一个超大质量的黑洞。银河系有两个较矮小的邻居——大麦哲伦云和小麦哲伦云,它们都属于不规则星系。由于引力的作用,银河系在不断地从这两个小星系中吸取尘埃和气体,使这两个邻居中的物质越来越少。预计在一百亿年里,银河系将会吞没这两个星系中的所有物质,这两个近邻将不复存在。
编辑本段河外星系
它们是与银河系类似的天体系统,距离都超出了银河系的范围,因此称它们为“河外星系”。仙女座星系就是位于仙女座的一个河外星系。河外星系与银河系一样,也是由大量的恒星、星团、星云和星际物质组成。目前我们观测到的河外星系有100亿个之多。1845年的漩涡星系素描图
20世纪20年代,美国天文学家哈勃在仙女座大星云中发现了一种叫作“造父变星”的天体,从而计算出星云的距离,终于肯定它是银河系以外的天体系统,称它们为“河外星系”。河外星系,简称为星系,是位于银河系之外、由几十亿至几千亿颗恒星、星云和星际物质组成的天体系统。之所以称之为河外星系,是因为他们全部都存在于银河系之外,即所有银河系之外的所有天体系统被称为河外星系。而银河系与河外星系即组成了天文学对于天体的最高称呼----总星系。银河系也只是总星系中的一个普通星系。人类估计河外星系包含的天体及天体系统总数在千亿个以上,它们如同辽阔海洋中星罗棋布的岛屿,故也被称为"宇宙岛"。关于河外星系的发现过程可以追溯到两百多年前。在当时法国天文学家梅西耶(MessierCharles)为星云编制的星表中,编号为M31的星云在天文学史上有着重要的地位。初冬的夜晚,熟悉星空的人可以在仙女座内用肉眼找到它——一个模糊的斑点,俗称仙女座大星云。从1885年起,人们就在仙女座大星云里陆陆续续地发现了许多新星,从而推断出仙女座星云不是一团通常的、被动地反射光线的尘埃气体云,而一定是由许许多多恒星构成的系统,而且恒星的数目一定极大,这样才有可能在它们中间出现那么多的新星。如果假设这些新星最亮时候的亮度和在银河系中找到的其它新星的亮度是一样的,那么就可以大致推断出仙女座大星云离我们十分遥远,远远超出了我们已知的银河系的范围。但是由于用新星来测定的距离并不很可靠,因此也引起了争议。直到1924年,美国天文学家哈勃用当时世界上最大的2.4米口径的望远镜在仙女座大星云的边缘找到了被称为"量天尺"的造父变星,利用造父变星的光变周期和光度的对应关系才定出仙女座星云的准确距离,证明它确实是在银河系之外,也像银河系一样,是一个巨大、独立的恒星集团。因此,仙女星云应改称为仙女星系。从河外星系的发现,可以反观我们的银河系。它仅仅是一个普通的星系,是千亿星系家族中的一员,是宇宙海洋中的一个小岛,是无限宇宙中很小很小的一部分。?
2. 超巨星是恒星吗
对于恒星这种天体,质量越大燃烧速度就越快,因为它的能量来自引力坍缩产生的高温高压内核,而更大的质量会让内核温度更高,因此其氢聚变的速度也就越快,而且足够的高的温度会让元素从氢之后的氦一直聚变到铁!
但从氦聚变开始后恒星就会离开主序带,逐渐变成一颗红巨星!这是因为氦的燃烧尽管要更高温,但也要比氢更剧烈,因此外壳逐渐膨胀形成红巨星乃至超巨星,而像参宿四这样的恒星,当前的直径已经达到了太阳的1180倍,其体积则是太阳的16亿倍左右!
3. 超巨星比太阳大吗
已知比太阳大的恒星有:比邻星、巨星、红超巨星心宿二、红超巨星参宿四、仙王座VV 、大犬座
4. 超级巨星星球
2015年7月苏黎世联邦理工学院的科学家通过欧洲洲南方天文台发现了一颗太阳系以外的行星。科学家把它称为HD 100546b。这是一颗巨型的气态巨行星。这颗行星是目前在宇宙中发现的最大的行星。
这颗行星有多大呢?HD 100546b距离地区大约335光年,围绕着一颗叫做HD 100546的恒星运转。它的直径大约是986500万公里。咱们把它和地球和木星以及其他天体比较一下,看看这颗宇宙中已知的最大行星有多大?
我们生活在地球上,对于人类来讲我们所生活的这个世界是非常巨大的。地球的直径是12756公里。然而在太阳系中地球的还不是最大的行星。地球只排在太阳系八大行星中的第五位。太阳系中最大的行星是木星。木星的直径是142984公里。它的直径是地球的11倍,体积是地球的1300多倍,质量是地球的318倍。
5. 超巨星有没有海洋星球
地球就是蓝巨星行星,地球70%是海洋,30%是陆地,加之大气层,是一颗蓝色的星球,宇航员发现我们的家园地球是蓝色的,太漂亮了!地球有充足的阳光,丰富的水资源,含氧的大气层,是生命的摇蓝,是人类文明的发祥地,是至今为止人类认识到唯一有文明的星球。
6. 超巨星有几种
太阳是一个专有名词,特指我们太阳系的这颗恒星,名叫太阳。如果将太阳泛指发光的恒星的话,则恒星的种类非常多,分类也很复杂。
1、按照大小(半径和/质量)分:矮星、巨星、超巨星。
2、再结合恒星的表面温度,可分为:黑矮星、棕矮星(褐矮星)、红矮星、黄矮星、白矮星。红巨星、蓝巨星、红超巨星。其中黑矮星是冷却后不再发光的白矮星。蓝巨星是初生的大质量恒星。棕矮星是质量太小,只能发出红外线和微弱红光的恒星。
按照恒星的演化阶段分:原恒星、主序星、红巨星或红超巨星。其中原恒星是刚刚形成的恒星,主序星是恒星的青年期到中年期,红巨星和红超巨星是老年恒星。
按照恒星的密度分:黑洞、中子星、白矮星、主序星、红巨星或红超巨星。恒星的密度依次降低。
按照恒星组合数量分:单星、双星、三合星、四合星、星团。
按照恒星的光谱型分:从O型星、B型星、A型星、F型星,到G型星、K型星、M型星。其表面温度由高到低排列。以及与K型星光谱类似的S型星、与G型星光谱类似的R型和N型星。
此外,还有变星、新星、超新星、脉冲星、X-射线星。。。其中变星有食变星、脉动变星(不是脉冲星)、爆发变星等。脉冲星就是高速旋转的中子星。当恒星光谱中有较强的X射线时,就叫X-射线星,其形成机理有好几种。新星和超新星都属于爆发变星。
以太阳为例,太阳是一颗主序星,单星,G型星、黄矮星。在大约45-50亿年后,太阳将不再是主序星,将成为一颗红巨星,然后成为一颗白矮星,最终会成为一颗黑矮星。
7. 超巨星有没有海洋星系
如果不算星云的话,最大的恒星:VY Canis Majorishttp://baike.baidu.com/view/2534240.htm?fr=ala0_1大犬座里的太阳质量30~40倍的巨恒星(特超巨星)它将来的命运就是成为超新星爆炸。然后产生宇宙中的重元素和一些新的星系比如太阳系与生命。附:已知最大卫星:X已知最大行星:TrES-4已知最大恒星:VY Canis Majoris已知最大星云:Tarantula Nebula已知最大星系:IC 1101
8. 超巨星会演变成什么
1.红巨星和红超巨星演化线路线不同。
红巨星一般指的是低质量或中等质量的恒星(0.3~8个太阳质量)进入生命末期,外层大气膨胀而形成的恒星,比如太阳在几十亿年后就会慢慢膨胀为红巨星,最终红巨星的半径可以达到太阳几十到几百倍,亮度达到太阳亮度的几百上千倍左右。
但是红超巨星是宇宙中体积最大的恒星,它们的质量虽然只有太阳质量的10~40倍,但是它们的体积往往是太阳体积的几十亿倍,半径是太阳的上千倍,亮度是太阳的数十万乃至上百万倍。