返回首页

海洋导航软件哪个好用(海洋导航技术有哪些)

来源:www.shuishangwuliu.com   时间:2023-05-11 15:33   点击:130  编辑:jing 手机版

1. 海洋导航技术有哪些

船用雷达是一种传统的无线电导航设备,在船舶近海定位、引导船舶进、出港,窄航道航行以及在避碰中发挥作用。GPS导航仪在海洋船舶中已普遍使用,它与雷达相比具有全球、连续、实时、高精度、多功能等优点。随着海用信标差分GPS(DGPS)基台的不断建立,可将使用GPS C/A码的定位精度提高到米量级。因此,还可应用DGPS或GPS导航仪来改善雷达的使用性能,测定雷达测距、测向精度,弥补雷达在避碰和锚位监视等方面的某些局限性。

2 GPS与雷达的定位与导航功能

2.1 定位功能

船用雷达发射无线电波,并接收该电波从目标反射的回波,在显示器上一目了然地显示周围物标相对于本船的图像。测定一个或几个固定物标相对于本船的方位和距离,可在海图上作出船位。由此可见,雷达对于船舶在近岸海区或窄航道上安全航行发挥重要作用,特别是在雾航中更加显示它的重要性。但是,由于受到雷达电波传播的视距所限,探测物标的距离通常只有几至几十海里,不能用于远洋定位。 GPS导航仪同时跟踪3颗或4颗卫星信号,测定到达卫星的伪距,通过导航仪内部计算机解算,实现实时、连续、全球、高精度定位,可弥补雷达不能实现远洋定位以及定位不连续、定位操作工作量大等缺点。

2.2 导航功能

30m左右的中型引航船。考虑到天津港冬季多大风,

锚地无遮蔽,以及在海况好时的工作方便,可考虑配置1艘不小于40m的大型子母引航船。天气及海况不好时,可单独执行任务;海况好时,可将其携带的2艘高速艇放下,共同执行任务。如子母船的设想不能成立,也可只配置1艘大型引航船,另配置2艘高速艇。 无论任何型号的引航船(艇),在设计上必须考虑到靠船的要求和引航员上、下船的方便。

3.3 对速度和操纵性能的要求 引航船在速度上不能低于16kn。 高速艇一般不能低于20kn。 从操纵灵活的要求出发,采用可变螺距船;驾驶操纵系统,应以方便1人操作为原则;大型引航船,还应加装首侧推器。

3.4 要配置先进的雷达及通信设备

另外,船身应为白色,并在明显处标注英文“引航(PILOT)”。

以上仅是对引航船提出一些的初步设想,根据规范化及国际大港口的要求来考虑,配置专用引航船是非常必要的。

普通船用雷达要获得航速、航向航迹等航行数据,需通过几次定位,由人工标绘实现。自动雷达标绘仪(ARPA)虽然自动显示上述数据,但存在跟踪延迟和雷达、计程仪、罗经等传感器引入的误差。另外,由于ARPA设备昂贵,不能在所有的船上安装。 GPS导航仪采用现代电子计算机技术,可实时计算并显示航速,航向,航迹偏差,风、流压差,还具有设置航路点、计划航线、显示到达航路点的距离、时间等导航功能。

3 GPS的避碰功能

船用雷达测定海上运动物标和静止物标的距离、方位等相对参数,通过人工标绘得到最近会遇距离(CPA)和到达最近会遇点的时间(TCPA)等避碰数据,驾驶员根据这些数据及时采取避让措施。但是,有些物标反射回波微弱,操作人员难以看清它们的回波图像,ARPA有可能对它们漏跟踪或错误跟踪而不能提供避碰数据。在气象条件恶劣时,出现严重的海浪回波干扰或雨、雪回波干扰,上述丢失物标的现象时有出现。对于未露出海面的暗礁、沉船、浅滩等潜在物标,雷达更是无能为力。根据海图和航海通告事先查出在航线附近水面危险的小物标和水下的潜在障碍物,把它们作为航路点在GPS导航仪中存贮,并根据障碍物和船舶状况设置报警范围。在航行中,驾驶员可以随时检查这些物标相对于本船的距离和方位。一旦船舶进入所设定的报警范围的边界,GPS导航仪立即发出报警,驾驶员作出避让措施。

4 GPS辅助雷达定位

雷达定位的难点是正确识别物标,对于不大熟悉雷达观测的驾驶员更是如此。若用雷达观测几个比较接近的非独立物标,由于物标回波图像边缘扩大、失真等原因,这些物标的回波图像难以清楚分开,因而观测雷达图像找不出与海图所对应的物标,或把一物标回波图像错认为另一物标的回波图像,获得错误的雷达船位或造成不能允许的船位误差。又由于在海图上查找雷达回波反射点要耽误时间,因而定位是不连续、不实时的,获取船位的时间滞后于实测船位的时间。滞后时间的大、小与观测者对雷达观测的熟练程度有关。

普通的GPS导航仪,除了直接存贮任一位置的经、纬度以外,还可输入当前位置到达雷达测量位置的距离、方位,计算并显示物标的所在位置的经、纬度。若把雷达测定的物标的距离、方位数据迅速输入GPS导航仪,根据它显示的经、纬度数据,可迅速在海图上找到对应的物标,由此作出雷达船位。用此方法取得的雷达船位比用常规法作得的船位准确、可靠,避免因识别反射物标错误而引起雷达船位错误或偏差,标绘所用的时间也可明显缩短。如果将雷达测定的距离和方位数据通过接口和控制装置输入GPS导航仪,导航仪就不需人工干预直接显示相应物标所在位置的经、纬度。

5 锚位监视功能

在船舶锚泊时,船用雷达可通过测定陆标的方位和距离监视本船的锚位偏离状况,也可通过测定到达他船的方位和距离监视他船的漂移状况,一旦发现本船和他船走锚,便可采取相应的措施避免发生事故。GPS的锚位监视是以锚位点为中心,输入的设定距离为半径,一旦天线所在位置超出此范围,即被认为走锚而发出报警。监控半径大、小的选择要根据GPS导航仪的定位精度、周围环境及船舶状况而定。由于GPS具有较高的定位精度,可以减小设置监控半径,提高监控灵敏度。若采用DGPS可进一步减小监控半径,提高监控灵敏度。通常,GPS导航仪的最小设置监控半径为0.1n mile。 虽然GPS不能监视他船的锚移状况,但对本船的锚移监视具有不需通过测定物标定位、监视灵敏度高、快速实时等优点。GPS与雷达相结合的锚位监控手段,对防止大风造成的损失可起到很大的作用。

6 DGPS测定船用雷达测向、测距误差

7 GPS与雷达配合应用需注意的问题

2. 海洋导航技术包括什么

1. 智能手机与平板电脑导航:智能设备中广泛应用了地磁传感器,将其与GPS和惯性导航等技术结合起来,可以实现更加准确和稳定的室内和城市峡谷地区的定位,同时也可以提供更加精准的指南针功能。

2. 无人机导航:地磁传感器被广泛应用于无人机导航系统中,可以提供更加准确和稳定的飞行控制,以及能够适应各种环境下的高度保持、姿态控制等功能。

3. 车载导航系统:地磁传感器在车载导航系统中也有应用,在隧道、城市峡谷等信号不好的区域可以提供帮助,同时也可以为自动驾驶汽车提供姿态控制和方向识别等重要信息。

4. 安防监控和物联网应用:地磁传感器可以用于安防监控系统,实现区域内的人员和物品的定位和跟踪;同时也可以用于物联网应用,检测物品位置和运动状态等信息。

3. 海洋导航软件

海洋技术专业是学习海洋高科技和海洋工程方面的基本理论和基本知识的。主要课程有:高等数学、VB程序设计、大学英语、海洋科学导论、物理海洋学、化学海洋学、生态海洋学、海洋测量学、卫星海洋学、微波遥感、海洋遥感应用技术、海洋地质学、地理信息系统原理与应用、卫星定位与导航、声学基础、声呐技术、海洋管理信息系统、数字海洋工程等。

海洋技术专业学生毕业后可在水产、饲料、鱼药、生物技术等相关行业从事生产、经营管理、技术开发与推广等工作。

海洋技术专业主要担任结构工程师、水产技术服务、机械工程师、声学工程师、电气工程师、销售工程师、技术支持、水产技术服务员、管线工程师、销售代表、销售经理、武汉区域经理、船舶结构工程师等。

4. 海洋导航技术有哪些特点

测量方法主要包括海洋地震测量、海洋重力测量、海洋磁力测量、海底热流测量、海洋电法测量和海洋放射性测量。

因海洋水体存在,须用海洋调查船和专门的测量仪器进行快速的连续观测,一船多用,综合考察。

基本测量方式包括:①路线测量。

即剖面测量。

了解海区的地质构造和地球物理场基本特征。

②面积测量。

按任务定的成图比例尺,布置一定距离的测线网。

比例尺越大,测网密度愈密。

在海洋调查中,广泛采用无线电定位系统和卫星导航定位系统。

5. 海洋导航技术有哪些优势

海洋是世界运输的大动脉。随着国际经济联系的日益加强,国际分工的日趋明显,战后海洋运输业发展甚为迅速。船只不断增多,船体越来越大,货运量逐年增加,港口建设的步伐大大加快,并开辟了一些新的航线。海运业之所以获得较快发展,与其本身存在许多优点分不开。海上运输与陆上运输相比,主要有以下优点:(1)航路是天然的,是大自然“赐给”的,开辟航路不需花费大量资金,也省去了日常维修的费用;(2)海上航线是水平的,没有陆地上的高山与洼地,因此,船舶的行驶不必消耗额外的燃料去爬高或减速下坡;(3)海上航线的通过能力一般不受限制,在主航线上可以有多条航线通行;(4)海洋是一个连续的水体,中间不必经过转运,船只可以直接到达大陆沿海及岛屿;(5)运送的货物品种不受限制,各种形态、各种形状的物品都可靠海上运输;(6)船舶容积大,一船载重几万吨、十几万吨,目前最高达55万吨,很适宜量大、体重的笨重货物远距离运输。总之,海运所需的费用少,与其他运输方式相比,货运的成本最低。海上运输但海上运输也有其不足之处:(1)速度慢。海洋运输速度仅快于内河航运,远慢于航空、公路、管道和铁路运输。因此,不易运送易腐货物,如需承担这方面的任务,必须投资在船上建冷藏装置。(2)航运仅限于沿海,不能满足陆上所有地区的需要。要想达到这一要求,必须在各港口筑建铁路及其他运输线路。(3)受天气条件影响较大,遇到恶劣天气,需及时改变航向或推迟航期,否则有使船只遇难之危险。为了减少这些不利因素,就需要增加投资造双底船,或装备昂贵的导航设备等。

6. 海洋导则

石油化工类标准。其他标准缩写

BB-包装行业标准;CB-船舶行业标准;CH-测绘行业标准;CJ、CJJ-城镇建设行业标准;CY、CW-新闻出版行业标准;DA-档案行业标准; DL、DLJ-电力行业标准;DZ-地质矿产行业标准;EJ-核工业行业标准;FZ、FJJ-纺织行业标准;GA-公共安全行业标准;GH-供销合作行业标准;GY、GYJ-广播电影电视行业标准;HB-航空行业标准;HG、HGJ-化工行业标准;HJ-环境保护行业标准;HY-海洋行业标准;JB、JBJ-机械行业标准;JC-建材行业标准;JG、JGJ-建筑行业标准; JR-金融行业标准; JT、JTJ-交通行业标准;JY-教育行业标准;LB-旅游行业标准;LD-劳动和劳动安全行业标准;LY-林业行业标准;MH-民用航空行业标准;MT-煤炭行业标准;MZ-民政行业标准;NY-农业行业标准;QB、QBJ-轻工行业标准;QC-汽车行业标准;QJ-航天行业标准;QX-气象行业标准;SB、SBJ-商业行业标准;SC-水产行业标准;SH、SHJ-石油化工行业标准;SJ-电子行业标准;SL、SLJ-水利行业标准;SN-商检行业标准检;SY-海洋石油天然气行业标准;SY、SYJ-石油天然气行业标准;TB、TBJ-铁路运输行业标准;TD-土地管理行业标准;WB-物质管理行业标准;WH-文化行业标准;WJ-兵工民品行业标准;WM-外经贸行业标准; WS-卫生行业标准;XB-稀土行业标准;YB、YBJ-黑色冶金行业标准;YC-烟草行业标准;YD、YDJ、YDn-通信行业标准;YS、YSJ-有色冶金行业标准;YY-医药行业标准;YZ-邮政行业标准

7. 海洋导航与定位技术

使用电子导航仪因为海底隧道是在地下水下建造的隧道,导航系统完全依赖于电子信号,因此可以使用电子导航仪来导航。这些电子导航系统可以帮助驾驶员确定车辆位置,并为其提供驾驶路线和任何限制或告警信息。一些电子导航仪还具有实时交通和天气信息功能,这些信息可帮助驾驶员避免拥堵或其他不利条件。此外,一些模型还可以配备定位系统,如全球卫星导航系统(GPS),以在高精度定位车辆并提供信息以及指引交通规划提供帮助。

8. 海洋导航定位线路

近年来,随着国家对海洋资源的重视,海洋开发已上升至国家战略。是传统测绘行业在海洋领域的应用。在华测导航等测绘单位的推动下,国内的海洋测绘视野已经囊括了海洋测绘仪器、方案研发、生产、销售、服务于一体,自主研发和包括单、多波束测深系统、水下定位系统、油气管道监测系统、卫星导航定位系统(北斗)等海洋重点领域全系列产品,并提供专业的海洋勘探、海洋测绘系统解决方案,广泛应用于海洋测绘、海洋环境监测、海洋程、海洋地球物理勘察、海洋生物、海洋可再生能源、水下考古打捞、内河航运、水利工程、水文监测、海事海监等领域。

9. 海洋导航技术有哪些领域

海上航行使用多种导航技术,包括:

1. GPS(全球定位系统):利用卫星信号提供全球精确的导航信息。

2. 船载导航设备:如卫星罗盘、惯性导航系统、海洋声学导航等,可以提供船只所在方向、距离、速度等信息。

3. 气象导航:利用气象数据提供海平面上升、下降、风、雨等气象信息,以帮助船只确定航向和避开风暴等风险。

4. 海洋测量:通过海洋测量仪器,如海底地形测量仪、海洋观测卫星等,测量海洋地形和海洋参数,为船只提供导航信息。

10. 导航海洋世界

海上通app分为海员版和渔民版,不同版本功能略有不同,均可以查看海浪预报、大风专业预报、台风路径等,海员版还可以查看港口预报、航线预报等与航行相关的天气情况,渔民版可以查看渔场预报、海温预报等与鱼群相关的海洋天气情况。

海上通app船舶导航功能即将上线,会结合海域气象信息给予船只更安全的导航辅助,航线测量等功能,同时提供船队船只动态管理。这是官网 http://www.seaweather.cn/

11. 下列关于海洋导航与定位说法正确的是

  什么是全球定位系统(GPS)   GPS(Globe Positioning System)即指全球定位系统,是美国20世纪三大空间技术之一(另两大技术是航天飞机和阿波罗登月计划),是当今世界航天航空技术、无线电通讯技术和计算机技术的综合结晶。   GPS系统由美国发射的24颗导航卫星构成的空间部分和分布在世界各地的地面监控部分组成。卫星的分布使得地球上任何位置都可同时观测到4颗以上的卫星。各星不断将自身参数、测距码发往地面,用户使用GPS接收机接收相应信号,并按一定准则解算出接收天线处的位置和速度等,从而实现对物体定位跟踪。   1.发展历史   五十年代未,原苏联发射了人类的第一颗人造地球卫星,美国科学家在对其的跟踪研究中,发现了多普勒频移现象,并利用该原理促成了多普勒卫星导航定位系统TRANsIT的建成,在军事和民用方面取得了极大的成功,是导航定位史上的一次飞跃,我国也曾引进了多台多普勒接收机,应用于海岛联测、地球勘探等领域。但由于多普勒卫星轨道高度低、信号载波频率低,轨道精度难以提高,使得定位精度较低,以满足大地测量或工程测量的要求,更不可能用于天文地球动力学研究。为了提高卫星定位的精度,美国从1973 年开始筹建全球定位系统GPS(Global Positioning System)。在进过了方案论证、系统试验阶段后,于1989年开始发射正式工作卫星,并于1994年全部建成,投入使用,历时20年,耗资200亿美元,是具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。   2.基本组成   GPS系统包括三大部分:空间星座部分——GPS卫星;地面控制部分——地面监控系统;用户设备部分——GPS信号接收机。   (1)空间星座部分   按目前的方案,全球定位系统的空间部分使用21颗工作卫星和3颗在轨备用卫星组成GPS卫星星座,记作(21+3)GPS星座,高度约2.02万千米,均为近圆形轨道,运行周期约为11小时58分,分布在六个轨道面上(每轨道面四颗),轨道倾角为55度。卫星的分布使得在全球的任何地方,任何时间都可观测到四颗以上的卫星,并能保持良好定位解算精度的几何图形(DOP)。这就提供了在时间上连续的全球导航能力。   卫星向地面发射两个波段的载波信号,载波信号频率分别为1575.442兆 赫兹(L1波段)和1227.6兆赫兹(L2波段),卫星上安装了精度很高的原子钟,以确保频率的稳定性,在载波上调制有表示卫星位置 的广播星历,用于测距的C/A码和P码,以及其它系统信息,能在全球范围内,向任意多用 户提供高精度的、全天候的、连续的、实时的三维测速、三维定位和授时。   (2)地面控制部分   GPS系统的控制部分由设在美国本土的四个监控站、一个上行注入站和一个主控站组成。监控站的主要任务是取得卫星观测数据并将这些数据传送至主控站。   主控站设在范登堡空军基地,主要任务是收集各监控站对GPS卫星的全部观测数据,利用这些数据计算每颗GPS卫星的轨道和卫星钟改正值。   上行注入站也设在范登堡空军基地,它的任务主要是在每颗卫星运行至上空时把这类导航数据及主控站的指令注入到卫星。   (3)用户设备部分   用户接收机:GPS 接收机能够捕获到按一定卫星高度截止角所选择的待测卫星的信号, 并跟踪这些卫星的运行,对所接收到的GPS信号进行变换、放大和处理,以便测量出GPS信号从卫星 到接收机天线的传播时间,解译出GPS卫星所发送的导航电文,实时地计算出用户接收机所处的三维位置,位置,甚至三维速度和时间。   GPS卫星发送的导航定位信号,是一种可供无数用户共享的信息资源。对于陆地、海洋和空间的广大用户,只要用户拥有能够接收、跟踪、变换和测量GPS信号的接收设备,即GPS信号接收机。可以在任何时候用GPS信号进行导航定位测量。根据使用目的的不同,用户要求的GPS信号接收机也各有差异。目前世界上已有几十家工厂生产GPS接收机,产品也有几百种。这些产品可以按照原理、用途、功能等来分类。   3.定位原理   按定位方式,GPS定位分为单点定位和相对定位(差分定位)。单点定位就是根据一台接收机的观测数据来确定接收机位置的方式,它只能采用伪距观测量,可用于车船等的概略导航定位。相对定位(差分定位)是根据两台以上接收机的观测数据来确定观测点之间的相对位置的方法,它既可采用伪距观测量也可采用相位观测量,大地测量或工程测量均应采用相位观测值进行相对定位。   在GPS观测量中包含了卫星和接收机的钟差、大气传播延迟、多路径效应等误差,在定位计算时还要受到卫星广播星历误差的影响,在进行相对定位时大部分公共误差被抵消或削弱,因此定位精度将大大提高,双频接收机可以根据两个频率的观测量抵消大气中电离层误差的主要部分,在精度要求高,接收机间距离较远时(大气有明显差别),应选用双频接收机。   由于卫星的位置精确可知,在GPS观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。   事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。   由于卫星运行轨道、卫星时钟存在误差,大气对流层、电离层对信号的影响,以及人为的SA保护政策,使得民用GPS的定位精度只有100米。为提高定位精度,普遍采用差分GPS(DGPS)技术,建立基准站(差分台)进行GPS观测,利用已知的基准站精确坐标,与观测值进行比较,从而得出一修正数,并对外发布。接收机收到该修正数后,与自身的观测值进行比较,消去大部分误差,得到一个比较准确的位置。实验表明,利用差分GPS,定位精度可提高到5米。   (1)伪距法:一般民用导航使用   GPS接收机根据接收所选卫星发来得导航信息和星钟校正参数的时间,能算出接收机到卫星的"距离"如果测量到三颗卫星的"距离":,则分别以三颗卫星发射时刻的卫星位置(按发射的星历参数确定)为中心,根据测得的"距离"画出三个球,其交点便是用户的三维位置。   但是由于接收机的本机钟对星载原子钟存在偏差,上面所测的"距离"并不能代表卫星到接收机的真实距离。人们把这种距离称做"伪距离"(简称伪距),伪距法由此得来,对第I颗星来说,伪距RI的表达式为:RI=Ri+c△tai+c(△tui-△tsi) 式中:Ri ---真距, c---光速, △tai---信号传播延时, △tui---用户钟相对于GPS时间的偏差, △tsi---卫星钟相对于GPS时间的偏差。   正因为用户钟与GPS时间不能精确同步,故每次测量总会有一个固定的偏差,这种偏差使定位产生不定性。如果我们再测量一个到第四颗卫星的伪距,则这时由用户钟偏差造成的定位不定性就产生一个由四个相交球面所围成的误差体积。我们从每个伪距测量中加上或减去这个固定值就消去了该固定体积,结果得到四个球面相交与一点,这就是用户的三维位置。实际上,这只要观测至四颗卫星的伪距并接收卫星的导航信息,解算四个方程就可得到。这种方法主要用于实时导航   (2)差分法:GPS定位是利用一组卫星的伪距、星历、卫星发射时间等观测量来实现的,同时还必须知道用户钟差。因此,要获得地面点的三维坐标,必须对4颗卫星进行测量。在这一定位过程中,存在着三部分误差。一部分是对每一个用户接收机所公有的,例如,卫星钟误差、星历误差、电离层误差、对流层误差等;第二部分为不能由用户测量或由校正模型来计算的传播延迟误差;第三部分为各用户接收机所固有的误差,例如内部噪声、通道延迟、多径效应等。利用差分技术,第一部分误差完全可以消除,第二部分误差大部分可以消除,其主要取决于基准接收机和用户接收机的距离,第三部分误差则无法消除。差分工作时需要一部位于已知精确位置的差分基准接收机,它对由GPS导出的解(位置或距离数据)与基准台(接收机)已知位置或距离数据比较,然后将修正项发给用户,以便修正用户本身的解。DGPS可消去公共性误差(卫星误差、大气层效应误差)。由于SA对测量的影响像一种慢变化的偏差,在近距离内相同,故差分校正也可将其消去。工作时,在一个地区(可达几百公里范围)设置一台差分基准台即可。利用C/A码可获得米级的定时定位精度,而利用载波相位数据可达毫米级。   (3)双频法:在GPS观测量中包含了卫星和接收机的钟差、大气传播延迟、多路径效应等误差,在定位计算时还要受到卫星广播星历误差的影响,在进行相对定位时大部分公共误差被抵消或削弱,因此定位精度将大大提高,双频接收机可以根据两个频率的观测量抵消大气中电离层误差的主要部分,在精度要求高,接收机间距离较远时(大气有明显差别),应选用双频接收机。   (4)其它:其他提高精度技术:   有联测定位技术;伪卫星技术;无码GPS技术;GPS测角技术;精密星历使用技术;反SA技术;GPS/GLONASS组合接收技术;GPS组合导航技术等。   4.应用领域   GPS的应用领域:   (1)民用领域   车辆自导航:车船管理调度-在出租车行业、长途运输业、租车服务业等将能够对车辆进行跟踪、调度管理。在拥挤的停车场、火车调度场能够准确地确定车辆的位置,有效地调动车辆。   邮递服务:对重要的货物、包裹与信函等进行跟踪、引导与保护。对货场物品入库与出库的调度能有效地确定货物的存放地点,提高出货效率,增加管理手段、避免积压。   民航运输:使飞机着陆时驾驶员通过仪表操作对准跑道。   渔业生产:GPS能满足渔猎对定位的要求。同时能为捕鱼船队在法律上避免发生捕鱼边界的纠纷,提高在经济专属区的作业效率。   公路水路维护:能准确地引导维护人员调查需维护的交通设施。   火警、警察、救护的应急调遣:提高紧急事件处理部门对火灾现场、犯罪现场、交通事故现场、交通堵塞等紧急事件的响应效率。   E-911:美国通讯委员会(FCC)要求将所有的移动电话安装无线电定位装置,以便用户在通过移动电话向911请求帮助时可找到用户位置,实现快速援助。GPS将是满足FCC要求的一种精确、成本低廉的方式。   搜索与求援:将更加有效地对在人迹罕至、条件恶劣的航海、登山探险、滑雪、沙漠作业中失踪的人员进行求援搜索。   道路支持:车在路上坏了时,将提高救援车辆找到你的效率。   突发事件临战状态准备:如在洪水发生时,需要快速地为救灾工作做好准备,如绘制洪水边界图、排洪国界图、排洪通道、防洪大堤的调查。   可随时查找运输车辆的当前位置,可获得车辆的定位数据和状态信息。实施跟踪一个或多个指定的运输车辆,使它们落在电子地图的窗口内。可设定跟踪优先级和时间间隔对目标进行跟踪。对车辆跟踪形成直观的运行轨迹。   (2)军用领域   GPS是自动化指挥系统、先进武器系统及新的战役战术理论的一项关键性基本保障技术,能为地面车辆、人员以及航空、航海、航天等领域的飞机、船只、潜艇、卫星、航天飞机进行导航定位;武器发射、侦察、飞机进场着陆、交通管制、搜索营救,战场部队、车辆以及单兵定位;精确制导导弹打击目标坐标定位及弹道导引。   5.GPS系统主要特点   (1) GPS系统的实时导航定位精度很高。美国在1992年起实行了所谓的SA政策,即降低广播星历中卫星位置的精度,降低星钟改正数的精度,对卫星基准频率加上高频的抖动(使伪距和相位的量测精度降低),后又实行了A-S政策,即将P码改变为Y码,即对精密伪距测量进一步限制,而美国军方和特许用户不受这些政策的影响,但美国为了获得更大的商业利益,这些政策终将被取消   (2)全球全天候连续无源。GPS能为全球任何地点或近地空间的各类用户提供连续的全天候全球导航能力。用户不发射信号,因而用户数量无限。   (3)用途广泛。GPS是军民两用的系统,其应用范围将极其广泛。   它以全天候、高精度、 自动化、高效益等显著特点,成功地应用于大地测量、工程测量、航空摄影测量、运载工具导航和管制、地壳运动监测、工程变形监测、资源勘察、地球动力学等多种学科。   6.GPS的干扰问题   GPS信号很弱,易于干扰。一家俄罗斯公司提供的一种4瓦功率的手持GPS干扰机,不到4000美元就买得到。如果从零售电子商店购买部件组装,花400美元就可以造一个干扰半径16千米以上的干扰机。   伊拉克战争开战之前,美国就已经预料到伊拉克方面会干扰GPS信号。美国其实早已经给其GPS炸弹和导弹装载了抗干扰技术,使这些GPS导引的武器能够在干扰的情况下继续使用GPS信号;即使GPS信号丢失,这些武器还可以使用自身的其它导引系统如惯性导航、激光制导等,使自己到达目标。   不过,美国军方以及军事分析家都认为,GPS导引武器的精度还依赖人的因素。操作手用GPS进行精确瞄准的能力,取决于他获得精确情报的能力。   作为GPS现代化计划和NAVWAR计划的组成部分,美国正在研究各种变通办法。最明显的一个提高抗干扰性能的方法是提供来自GPS卫星的发射功率。   NAVSTAR GPS联合项目办公室系统项目主管2002年5月宣布,根据目前的发射计划,GPS的卫星信号将在2009年内得到有效的加强。到2003年或2004年空军将开始发射比目前轨道上的卫星信号强10分贝的GPS卫星。然而GPS用户必须一次从四个卫星上得到信号。   2003财年预算包含了加强GPS信号的资金。如果得到国会通过,首颗具有更强信号的卫星将在2003年后半年或2004年前期发射。目前的星座包括4颗Block II卫星、18颗Block IIA和6颗Block IIR。另外26个GPS-IIF和IIR卫星正在制造中,其中至少20颗的信号得到加强。首颗Block IIF卫星将在2005年晚些时候发射。   提高GPS卫星的发射功率还不能解决抗干扰的全部问题,还必须提高海陆空用户端的GPS抗干扰能力。用户设备抗干扰技术主要分成两类:   (1) 一类是能够在保持或放大GPS信号的同时降低干扰机功率;   (2) 另一类是通过接收机内的先进信号处理(即处理增益)来提高信噪比。   在降低干扰机功率的先进技术中,最有前景的是原本研制用于雷达的一种技术,即所谓空间-时间自适应处理。本技法的一个相近变种是空间-频率自适应处理,在频域提供等效的处理。这些技法有希望是因为它们协调运用了空间与时间资源去最优地攻击多个干扰机。

顶一下
(0)
0%
踩一下
(0)
0%