1. 电位移密度单位
带有磁性的原子核在外磁场的作用下发生自旋能级分裂,当吸收外来电磁辐射时,将发生核自旋能级的跃迁,从而产生核磁共振现象。
在有机化合物中,处在不同结构和位置上的各种氢核周围的电子云密度不同,导致共振频率有差异,即产生共振吸收峰的位移,称为化学位移。
2. 位移电流密度单位
因为环路L1圈住得比较小,所以肯定是电流比较小的(因为位移电流密度处处相等)。
3. 位移电流密度数学表达式
△r=r(t2)-r(t1)
在物理学中,△常常作为变量的前缀使用,表示该变量的变化量,如:△t(时间变化量)、△T(温度变化量)、△X(位移变化量)、△v(速度变化量)等等。
4. 电位移等于电荷密度
在电场中存在电介质的情况下, 电场强度等于自由电荷和极化电荷所激发的场的叠加, 为真空中的介电常数,移项得: 方括号中项只与电荷密度有关,因此将括号中项称为电位移矢量,即: ( 为真空介电常数 , 为此电介质的相对介电常数; 为电极化强度;国际单位制(SI)中 单位: )
5. 电位移的单位
介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一个系数,以字母ε表示,单位为法/米 .
它是一个在电的位移和电场强度之间存在的比例常量.这一个常量在自由的空间(一个真空)中是8.85×10的-12次方法拉第/米(F/m).在其它的材料中,介电系数可能差别很大,经常远大于真空中的数值,其符号是eo.
在工程应用中,介电系数时常在以相对介电系数的形式被表达,而不是绝对值.如果eo表现自由空间(是,8.85×10的-12次方F/m)的介电系数,而且e是在材料中的介电系数,则这个材料的相对介电系数(也叫介电常数)由下式给出:ε1=ε / εo=ε×1.13×10的11次方
很多不同的物质的介电常数超过1.这些物质通常被称为绝缘体材料,或是绝缘体.普遍使用的绝缘体包括玻璃,纸,云母,各种不同的陶瓷,聚乙烯和特定的金属氧化物.绝缘体被用于交流电.泡沫塑料用聚苯乙烯、聚氯乙烯、聚氨基甲酸酯等树脂制成 聚苯乙烯2.2.6 ,介电常数有相对介电常数和有效介电常数之分,平时我们说的介电常数就是相对介电常数,硅的相对介电常数是11.9 .(AC),声音电波(AF)和无线电电波(射频)的电容器和输电线路.
一个电容板中充入介电常数为ε的物质后电容变大ε倍
6. 电位移和电流密度
电磁场在两种不同媒质分界面上,从一侧过渡到另一侧时,场矢量E、D、B、H一般都有一个跃变。电磁场的边界条件就是指场矢量的这种跃变所遵从的条件,也就是两侧切向分量之间以及法向分量之间的关系。在某些电动力学或电磁场理论的书中,为了与另一种边界条件(在区域的表面上给定的有关场矢量的边值)相区别,将本条所解释的电磁场边界条件称为电磁场的边值关系。 电磁场的边界条件可以由麦克斯韦方程组的积分形式推出,它实际上是积分形式的极限结果。这些边界条件是
n·(D1-D2)=ρs; (1)
n×(E1-E2)=0; (2)
n·(B1-B2)=0; (3)
n×(H1-H2)=J)s。 (4)
式中n为两媒质分界面法线方向的单位矢量,场矢量E、D、B、H的下标1或2分别表示在媒质1或2内紧靠分界面的场矢量,ρs为分界面上的自由电荷面密度,Js为分界面上的传导电流面密度。式(1)表示在分界面两侧电位移矢量D的法向分量的差等于分界面上的自由电荷面密度。当分界面上无自由电荷时,两侧电位移矢量的法向分量相等,即其法向分量是连续的。式(2)表示在分界面两侧电场强度E的切向分量是连续的。式(3)表示在分界面两侧磁通密度B的法向分量是连续的。式(4)表示在分界面两侧磁场强度H的切向分量的差等于分界面上的表面传导电流面密度。当分界面上无表面传导电流时,两侧磁场强度的切向分量相等,即其切向分量是连续的。 当媒质2为理想导体时,E2、D2、B2、H2等于零,式(1)表示D1的法向分量等于自由电荷面密度;式(2)表示E1无切向分量式(3)表示B1的法向分量为零;式(4)表示H1的切向分量等于表面传导电流面密度,并且与电流方向正交