返回首页

海洋腐蚀危害数据(海洋腐蚀环境理论及其应用)

来源:www.shuishangwuliu.com   时间:2023-04-16 05:51   点击:51  编辑:jing 手机版

1. 海洋腐蚀环境理论及其应用

金属构件在海洋环境中发生的腐蚀。海洋环境是一种复杂的腐蚀环境。在这种环境中,海水本身是一种强的腐蚀介质,同时波、浪、潮、流又对金属构件产生低频往复应力和冲击,加上海洋微生物、附着生物及它们的代谢产物等都对腐蚀过程产生直接或间接的加速作用。海洋腐蚀主要是局部腐蚀,即从构件表面开始,在很小区域内发生的腐蚀,如电偶腐蚀、点腐蚀、缝隙腐蚀等。此外,还有低频腐蚀疲劳、应力腐蚀及微生物腐蚀等

。通常

,金属构件在海洋飞溅区(指风浪、潮汐等激起的海浪、飞沫溅散到的区域)的全面腐蚀速率最高。防止海洋腐蚀的措施除正确设计金属构件、合理选材外,通常有以下几种:①采用厚浆型重防式涂料。②对重点部件采用耐腐蚀材料包套。③设计构件时要考虑到足够的腐蚀裕量。④根据电化学腐蚀原理,采用牺牲阳极。

2. 海洋环境的腐蚀情况可分为五大区

材料腐蚀发生在材料表面。按腐蚀反应进行的方式分为化学腐蚀和电化学腐蚀。前者发生在非离子导体介质中;后者发生在具有离子导电性的介质中,故可通过改变材料的电极电位来改变腐蚀速度。

按材料破坏特点分为均匀腐蚀、局部腐蚀和选择性腐蚀。

均匀腐蚀指材料表面各处腐蚀破坏深度差别很小,没有特别严重的部位,也没有特别轻微的部分。

局部腐蚀是材料表面的腐蚀破坏集中发生在某一区域,主要有孔蚀、缝隙腐蚀、晶间腐蚀等。

选择性腐蚀是金属材料在腐蚀介质中,其活性组元产生选择性溶解,由金属材料合金组分的电化学差异所致。

按腐蚀环境又分为微生物腐蚀、大气腐蚀、土壤腐蚀、海洋腐蚀和高温腐蚀等

3. 海洋腐蚀环境理论及其应用研究

氯盐使根据混凝土里的钢筋生锈:因为钢筋的化学成分是C、SI、Mn、P、S。

氯离子Cl比这五种任何一种一种元素都活泼,所以就会与之反应从而改变钢筋的化学成分,使之生锈。

硝酸盐(NO2)-中的N为+3价,所以既有氧化性,又有还原性,有较强的氧化能力。

亚硝酸盐中的N为+2价,在正常较难与其他物质反应,除非是高温、高压下才与极少数反应。氯离子引起的钢筋锈蚀水下商品混凝土中,氯离子进行商品混凝土通常有两种途径:

其一是“掺入如含有氯盐的外加剂,使用海砂,施工用水含氯盐,在含盐环境中搅拌,浇筑商品混凝土时,其二是”渗入“环境中的氯盐通常通过商品混凝土的宏观、微观缺陷,渗入到商品混凝土中并达到钢筋表面,直接或间接破坏商品混凝土的包裹作用及钢筋钝化的高碱度两种屏障,使之发生锈蚀继而锈蚀产物体积膨胀,使商品混凝土保护层开裂与脱落;在海洋环境中的水下商品混凝土结构大都是这种情况。氯离子引起钢筋锈蚀可以从以下几个方面分析:

1破坏钝化膜商品混凝土属于碱性材料,其孔隙溶液的PH值为12-14,因而对钢筋具有较好的保护作用,有利于钢筋表面形成保护钢筋的钝化膜,但这种钝化膜只有在高碱环境中才是稳定的。

假如四周环境PH值降到11.8时,钝化膜就开始变得不稳定,当PH值继续降到9.88时,钝化膜就开始变得难以生存或逐渐破坏,使得进入商品混凝土中的氯离子吸附于钝化膜处,并使钝化膜的PH值迅速降低,逐步酸化,从而使得钝化膜被破坏。

2形成腐蚀电流无论商品混凝土碳化还是氯离子侵蚀,都可以引起钢筋部分锈蚀,在钝化膜破坏处有腐蚀电流产生,在钝化膜破坏还与未破坏区这间存在电位差,有宏电流产生,但微电流要比宏电流大得多。

又因为氯离子的存在大大降低了商品混凝土的电阻率,并且氯离子和铁离子的结合可以形成易容于水的氯化铁,从而加速了腐蚀产物向外的扩散过程,并由于宏观腐蚀电流在钝化膜破坏区边边缘最大,使得靠近钝化区的边缘的局部钝化膜破坏较快,这种现象称为局部锈蚀钢筋的“边缘效应”。

3氯离子导电作用正是由于商品混凝土结构中氯离子的存在,大大降低了阴、阳极之间的欧姆电阻,强化了离子通路,提高了腐蚀电流的效率,从而加速了钢筋的电化学腐蚀过程,氯离子对商品混凝土中钢筋锈蚀更严重更快速.而氯化物是钢筋的一种活化剂,它能置换钝化膜的氧而使钢筋发生溃烂性腐蚀,而氯盐是高吸湿性的盐,它能吸收空气中的水分变成液体,从而使氯离子从扩散作用

4. 海洋腐蚀案例

船舶长期处于海洋环境中,腐蚀极为严重,而腐蚀速度与海水的流运速度、气泡、温度、冲击性以及海水所含微生物等因素都有极为密切的关系。船体在海水吕的腐蚀主要有电化学腐蚀、机械作用腐蚀、生物腐蚀和化学腐蚀几种,其中最主要的是电化学腐蚀,即在腐蚀过程中有微电流产生。

发生在船体钢结构上的电化学腐蚀

1.氧的浓差电池作用

由于氧有夺取电子的能力,且水面的氧较水下的氧多,故近水面部分的金属得到电子成为阴极,而水中部分的金属失去电子成为阳极而发生腐蚀。腐蚀发生后,缝隙或缺口处的氧多,而底部氧少,从而底部继续腐蚀,最后成为锈坑或锈穿。

2.两种不同金属或钢种的腐蚀

在海水中,两种不同成分的金属接触时,电势较低的金属成为阳极发生腐蚀,例如铆钉和焊缝处容易锈蚀,原因即在于此。

3.氧化皮引起的腐蚀

由于氧化皮的电极电位比钢铁约高0.26V,所以成为阴极,而钢铁本身成为阳极发生腐蚀。

4.涂膜下的腐蚀

由于实际上涂膜表面有微孔存在,所以海水仍可缓慢穿过涂膜产生电化学腐蚀。此时,含涂膜的部分成为阴极,不含涂膜的部分成为阳极而发生腐蚀,所以使涂膜鼓起破坏。在涂膜未损环或失效时,这一过程是缓慢的。

涂漆前未除尽的氧化皮、锈蚀物、污物、水分、盐类等,在涂膜下加速腐蚀进程,破坏涂膜。涂装时漏涂等施工缺陷也会加速腐蚀进程,从而过早破坏涂膜。涂膜损坏后,将产生前述各种腐蚀,这种腐蚀速度比未涂漆时更快。

5.杂散电流引起的腐蚀

由于供电或电焊时,违反操作规程,产生漏电,从而使船体变成一个巨大的阳极,产生大规模的腐蚀。这种腐蚀是非常惊人的,例如,某厂建造的四艘海船,出厂一年,6mm的钢板几乎全部烂穿。

机械作用腐蚀

机械作用的腐蚀包括腐蚀作用和机械磨损,两者相互加速。其中包括冲击腐蚀,这是由于液体湍流或冲击所造成的;空泡腐蚀,高速流动的液体,因不规则流动,产生空泡,形成“水锤作用”,常常破坏金属表面的保护膜,加速腐蚀作用,如螺旋桨、泵轴等处易发生;微振磨损腐蚀,两个紧接着的表面相互振动而引起的磨损;应力腐蚀开裂,是在拉伸应力的腐蚀介质作用下的金属腐蚀破坏,金属内会产生沿晶或穿晶的裂纹。

生物腐蚀生物腐蚀是由海洋生物在船度附着引起的,这种腐蚀包括化学腐蚀和电化学腐蚀两种。由于海洋生物在船度的附着,破坏了漆膜,造成局部电化学腐蚀;由于微生物的新陈代谢作用,分泌出具有侵蚀性的产物如C02/NH4OH/H2S等以及其他有机酸和无机酸引起钢板的腐蚀作用。本文编辑:进口铝板

5. 海洋腐蚀与防护前景

海水是一种含有多种盐类的电解质溶液,以3~3.5%的氯化钠为主盐,pH值为8左右,并溶有一量的氧气。除了电位很负的镁及其合金外,大部分金属材料在海水中都氧去极化腐蚀。其主要特点是海水中氯离子含量很大,因此大多数金属在海水中阳极极化阻滞很小,腐蚀速度相当高;海浪、飞溅,流速等这些利于供氧的环境条件,都会促进氧的阴极去极化反应,促进金属的腐蚀。海水导电率很大,所以不仅腐蚀微电池活性大,宏电池的活也很大。海水中不同金属相接触时,很容易发生电偶腐蚀。即使两种金属相距数十米,只要存在电位差,并实现电联结,就可能发生电偶腐蚀。

对于处于海水环境中的桥梁结构来说,除了大气部位受海洋性大气腐蚀影响之外,可以把桥梁如同海洋工程一样分为飞溅区、潮差区、全浸区和海泥区。

(1)飞溅区

指平均高潮线以上海洋飞溅所能湿润的位置。在这个部位,金属材料表面连续不断地被海水湿润,海水又与空气充分接触,含氧量充分,含盐量很高,加上海水的冲击作用,腐蚀在这个部位最为严重。当很高的风速和海流速造成强烈的海水运动时,海水的冲击会在飞溅区成磨耗-腐蚀联合作用的破坏。同时强烈的海水冲击不断地破坏腐蚀产物和保护涂层,增加了飞溅区的腐蚀。

不同海区飞溅区的腐蚀主要于风浪和温度。飞溅区金属表面温度更接近于气温。风浪大的热带海域钢铁在飞溅区的腐蚀最为严重。

(2)潮差区

指平均高潮位与平均低潮位之间的区段,金属表面与含氧充分的海水周期性地接触,引起腐蚀。与飞溅区相比,潮汐区的氧扩散没有飞溅区那样快,也无强烈的海水冲击。潮汐区金属表面温度受气温影响也受海水温度的影响,通常接近于表层海水温度。

潮差区有海生物栖居,而飞溅区没有。

潮差区的腐蚀通常是平均高潮位和平均低潮位最为严重,这是氧浓差电池的作用。潮差段因供氧充分,成为阴极,受到一定程度的保护,腐蚀减轻。低潮位以下全浸区因供氧相对较少成为阳极,使腐蚀加速。在工程设计上,有时把潮差区并入飞溅区一起考虑,并不是因为两段间的腐蚀是一样的,而是从施工、维护和阴极保护方面加综合考虑,使之协调一致。

(3)全浸区

平均低潮线以下的位置为海水全浸区。根据海洋的深度不同,又分为浅海区和深海区,二者并无确切的深度界限,一般所说的浅海区大多指100~200m以内的海水。

海洋环境因素如温度、含氧量、盐度、pH值等随海洋的深度而变化,所以海水深度必然影响到全浸区金属的腐蚀行为。其中是最为主要的因素是温度和含氧量。全浸区中钢铁的腐蚀速度在0.07~0.18mm/a。

浅海区海水氧处于饱和态,温度高,海水流速大腐蚀比深海区大,海洋生物会粘附在金属材料上。一般来说,20m水深以内的海水较深层海水具有更强的腐蚀性。深海区的含氧量较小,温度接近0℃,海洋生物的活性减小。

(4)海泥区

主要由海底沉积物构成,含盐度高,电阻率低,因此是良好的电解质,对金属的腐蚀要比陆地上土壤要高。由于氧浓度十分低,所以海泥区的腐蚀比全浸区要低。

海洋中存生在着多种动植物和微生物,它们的生命活动会改变金属-海水界面的状态和介质性质,对腐蚀产生不可忽视的影响。海生物的附着会引起附着层内外的氧浓差电池腐蚀。某些海生物的生长会破坏金属表面的涂料等保护层。在波浪和水流的作用下,可能引起涂层的剥落。在附着生物死后粘附的金属表面上,锈层以下以及海泥里,都是缺氧环境,会促进厌氧的硫酸盐还原菌的繁殖,引起严重的微生物腐蚀,使钢铁的腐蚀增大,其典型特征是外貌呈沾污的黑色糊。一些研究结果表明,在SRB大量繁殖的海泥中,钢铁的腐蚀速度要比无菌海泥中高出数倍到10多倍,甚至还要高出海水中2~3倍。

如同潮差区和全浸区一样,在全浸区和海泥区之间也会因为氧的浓度不一样而造成浓差电池。泥线以下因为相对缺氧而成为阳极,加重腐蚀。

顶一下
(0)
0%
踩一下
(0)
0%