返回首页

海洋水下通讯(水下通讯用什么通讯技术)

来源:www.shuishangwuliu.com   时间:2023-04-04 11:58   点击:291  编辑:jing 手机版

1. 水下通讯用什么通讯技术

潜艇在水下的通讯联络方式有两种:

一,水中通讯——利用声呐设备:

为了达到隐蔽的目的,潜艇大部分时间是在深水活动,声音在空气中的传播速度为每秒340米,而在水中高达每秒1435米。

有一种水下通信声呐,它能向水中发射长短不一的声波信号,组成电报的密码,或将语言和声波相互转换来通话,它的任务是保证潜艇的集群活动或配合其它兵力通讯联络需要;敌我识别声呐是在水下偶然发现水面或水下潜艇时,用对口令的方式判断敌我,这种声呐发出一个特殊的信号(口令)询问对方,对方若是自己的潜艇,就回答一个信号,若不是就收不到信号,即使收到也不能正确回话。

水中使用声纳是严格控制的,因为容易被敌方截获。

二,在水中与外界通讯——利用无线电波

潜艇要遂行军事任务必须要与外界有安全可靠的通信方式,短波在水中不能使用,因为短波在水中衰减得太快,为了解决此问题,可以采用浮标天线或浮力天线,即把天线通过一根长长的绳索施放到水面,这样潜艇在水下也可发射信号。

实际上,这样仍然存在一个潜艇自我暴露的问题,因为潜艇在远距离用短波通信,其信号本身就不保密,可能被敌方截获破译,并测出潜艇的位置,而且露出水面的浮标天线也有被敌方雷达探测到的可能。

目前潜艇在水下如不施放通讯浮标,是无法主动与岸上联络的,所以核潜艇只能被动地单方面接收岸上的无线电超长波信号或极长波信号,这是岸上向潜艇通信的主要方式。 超长波的波长为1万到10万米,它能从空中钻入水里,在水中的衰耗比较小,穿透海水的深度最大可达30米,使水下的潜艇接收到岸上发来的电波。

极长波的波长大于10万米,几乎可以在全球范围内实现对潜通信,穿透水层的深度达200米以上,即使在最大距离上也可达到水下80米左右。 美国海军威斯康星州极长波通信试验基地于1972年做发射试验,一艘远在4600千米以外的大西洋水下120米处的美国黑?号核潜艇接收到了该台的信号。

由于超长波和极长波发射设施非常庞大,占地达数平方千米,在潜艇上不可能安装,所以只能建在陆地,对潜艇来说,超长波通信和极长波通信只是单向广播式的通信,如果潜艇要接收岸上指挥机构的指令,必须按规定的时间和频率接收。

潜艇在水下接收这种长波信号的深度是依据岸上长波发射台的发射功率大小决定的。由于极长波在单位时间内传送的信息量少,所以通讯速度很慢。据试验,发送20个英文字母需用几十分钟时间,只能给核潜艇发送一些预先规定好的简单易懂的信号,如给弹道导弹核潜艇发送发射核弹的命令等。

随着激光技术的发展,人们又把目光投向卫星对潜激光通信。激光是极高频、频段在10千千赫以上(波长 3—30微米)的电磁波,通过卫星将信息发送或反射至潜艇。激光通信传输速率快,比极长波系统快几十万倍,具有方向性好、亮度高、能量集中、保密性强和有很强的抗核破坏能力等特性。

激光通信设备可以做得轻便而经济,尤其天线小,一般天线仅几十厘米,重量不过几千克。激光通信的这些特点,可使潜艇在水下最佳安全巡航状态完成通讯任务。

2. 水下通信技术有哪些

潜艇在水中与外界通讯——利用无线电波:

潜艇要遂行军事任务必须要与外界有安全可靠的通信方式,短波在水中不能使用,因为短波在水中衰减得太快,为了解决此问题,可以采用浮标天线或浮力天线,即把天线施放到水面

3. 水下通信靠什么

水下通讯主要有无线电,激光,水声通讯这三种。

当前,随着无人与智能化装备的高速发展,水下通信技术逐渐成为影响水下作战部队信息化作战的瓶颈,无法支持复杂战场态势信息实时传输的需求,面临较大挑战。

首先,在传输速率方面,水声通信、微波通信和光通信等传统通信手段难以形成突破,无法支持视频传输、复杂战场信息传输等未来信息化作战需求。

其次,在传输隐蔽性方面,水声通信和光通信容易暴露自身目标,具有先天难以弥补的劣势,磁感应通信系统的出现有可能解决上述弊端。在保证传输速率和安全性的同时,适应各种复杂的水文环境,具有成为未来水下通信系统的首选方案的潜质。

最后,在水下与水上互联互通问题上,通过浮标实现水下与水上通信的中继已成为各国海军的共识,当前各国仍在大力研究浮标的无间断供电、小型化以及伪装问题,以增强水下目标的生存性。

4. 水下通信设备

1850年,人们在英国和法国之间铺设了世界上第一条国际海底电缆,1866年,英国在大西洋铺设了一条连接英美两国的海底电缆。

国际海缆,又称国际海底通讯电缆,是用绝缘材料包裹的导线,铺设在海底,用以设立国家之间的电信传输。

首批海底通讯电缆提供电报通讯,后来开始引入电话通讯,以及互联网通讯。现代的电缆还使用了光纤技术,并且设立更先进的电话通讯、互联网与私人数据通讯。

截至2005年时,除南极洲之外,海底电缆已经覆盖了世界上其他所有洲。

5. 水下通信的唯一手段

光芯片一般指光子芯片。用于完成光电信号的转换,是核心器件,分为有源光芯片和无源光芯片。光芯片包括了激光器、调制器、耦合器、波分复用器、探测器等。在运营商的核心交换网设备、波分复用设备、以及即将普及的5G设备中有大量的光芯片。

2.光子芯片原理

原理:光子芯片研究人员将磷化铟的发光属性和硅的光路由能力整合到单一混合芯片中。当给磷化铟施加电压的时候,光进入硅片的波导,产生持续的激光束,这种激光束可驱动其他的硅光子器件。这种基于硅片的激光技术可使光子学更广泛地应用于计算机中,因为采用大规模硅基制造技术能够大幅度降低成本。

芯片能够解决电子芯片解决不了的难题。有物理基础的人应该知道,电子是费米子,是有质量的物质,所以在传输信号时会因为质量的惯性产生较多的能量损耗;光是玻色子,是物质之间的相互作用力,静止质量为零,传输信号时能量损耗小。与电子相比,光子作为信息载体具有先天的优势:超高速度、超强的并行性、超高带宽、超低损耗。

※一是在传输信息时光子具有极快的响应时间。光子脉冲可以达到fs量级(飞秒量级),信息速率可以达到几十个Tb/s,性能能够提升数百倍。

6. 水下通信

必须能。水下是可传输无线电波的,比如潜艇通信,不过在水下电磁波衰减较大,传播的距离非常有限,没有实用价值。

为了解决此问题,可以采用浮标天线或浮力天线,即把天线施放到水面,这样潜艇在水下也可发射信号。

实际上,这样仍然存在一个潜艇自暴露的问题,因为潜艇在远距离用短波通信,其信号本身就不保密,可能被敌方截获破译,并测出潜艇的位置,而且露出水面的浮标天线也有被敌方雷达探测到的可能。

7. 水下通信装置

水下电磁波,光波衰减很大,目前远距离只有用超声波是比较适合在水下远距离传播的。

顶一下
(0)
0%
踩一下
(0)
0%