返回首页

海洋工程设计手册(海洋工程设计手册海洋结构分析)

来源:www.shuishangwuliu.com   时间:2023-03-03 04:55   点击:84  编辑:jing 手机版

1. 海洋工程设计手册海洋结构分析

海洋地理考察也太过于和一般的自然科学考察搅混在一起了。海洋学似应属于一般的地球科学,跟气象学一样不太宜于列入地理学,因为地理学在海洋方面也必须运用区域的观点,即是说必须掌握海洋的差别性。

海洋学不应停留在单纯地考察水本身;因为除陆地以外,海洋是地表另一种巨大的表现形式,并且正如地志学的任务是在无机和有机自然界以及人类的一切现象的并存和共同作用之中理解各个地区一样,对海洋的地理考察也必须努力使之成为一种全面的考察,把对水的考察和对位于它上面的大气、对动植物生活和人类生活表现的考察结合起来。

除了为航行服务的航行手册以外,这个意义上的海洋地理学迄今还很少受到扶植。

它离开与地志学处于同等的地位还很远

2. 海洋工程结构动力分析

流体是气体和液体的总称。在人们的生活和生产活动中随时随地都可遇到流体。所以流体力学是与人类日常生活和生产事业密切相关的。 地球流体力学  大气和水是最常见的两种流体。大气包围着整个地球,地球表面的百分之七十是水面。大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容,属于地球流体力学范围。 水动力学

水在管道、渠道、江河中的运动从古至今都是研究的对象。人们还利用水作功,如古老的水碓和近代高度发展的水轮机。船舶一直是人们的交通运输工具,船舶在水中运动时所遇到的各种阻力,船舶稳定性以及船体和推进器在水中引起的空化现象,一直是船舶水动力学的研究课题。这些研究有关水的运动规律的分支学科称为水动力学。 气动力学

20世纪初世界上第一架飞机出现以来,飞机和其他各种飞行器得到迅速发展。20世纪50年代开始的航天飞行使人类的活动范围扩展到其他星球和银河系。航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相连的。这些学科是流体力学中最活跃、最富有成果的领域。 渗流力学

石油和天然气的开采,地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一渗流力学研究的主要对象。渗流力学还涉及土壤盐碱化的防治,化工中的浓缩、分离和多孔过滤,燃烧室的冷却等技术问题。 物理-化学流体动力学

燃烧煤、石油、天然气等,可以得到热能来推动机械或作其他用途。燃烧离不开气体。这是有化学反应和热能变化的流体力学问题,是物理-化学流体动力学的内容之一。爆炸是猛烈的瞬间能量变化和传递过程,涉及气体动力学,从而形成了爆炸力学。 多相流体力学

沙漠迁移、河流泥沙运动、管道中煤粉输送、化工流态化床中气体催化剂的运动等都涉及流体中带有固体颗粒或液体中带有气泡等问题。这类问题是多相流体力学研究的范围。 等离子体动力学和电磁流体力学

等离子体是自由电子、带等量正电荷的离子以及中性粒子的集合体。等离子体在磁场作用下有特殊的运动规律。研究等离子体的运动规律的学科称为等离子体动力学和电磁流体力学(见电流体动力学,磁流体力学)。它们在受控热核反应、磁流体发电、宇宙气体运动(见宇宙气体动力学)等方面有广泛的应用。 环境流体力学

风对建筑物、桥梁、电缆等的作用使它们承受载荷和激发振动;废气和废水的排放造成环境污染;河床冲刷迁移和海岸遭受侵蚀;研究这些流体本身的运动及其同人类、动植物间的相互作用的学科称为环境流体力学(其中包括环境空气动力学、建筑空气动力学)。这是一门涉及经典流体力学、气象学、海洋学和水力学、结构动力学等的新兴边缘学科。 生物流变学

生物流变学研究人体或其他动植物中有关的流体力学问题,例如血液在血管中的流动,心、肺、肾中的生理流体运动(见循环系统动力学、呼吸系统动力学)和植物中营养液的输送(见植物体内的流动)。此外,还研究鸟类在空中的飞翔(见鸟和昆虫的飞行),动物(如海豚)在水中的游动,等等。 因此,流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。以上主要是从研究对象的角度来说明流体力学的内容和分支。此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。

https://iknow-pic.cdn.bcebos.com/f703738da977391260749e9eff198618377ae2fb

3. 海洋结构物设计与制造

船舶与海洋工程是一级学科,船舶与海洋结构物设计制造是二级学科。

两者是隶属关系,船舶与海洋工程学科包含了船舶与海洋结构物设计制造、船舶建造工艺等二级学科。按照目前的专业设置,本科招生只有船舶与海洋工程专业,本科阶段的第三年(即大三)时要选择方向,即在船舶与海洋结构物设计制造、船舶建造工艺等二级学科中选择一个。本人是船舶与海洋工程专业本科在读学生,即将大三了,今年9月前后就要选择专业方向。

4. 海洋工程设计的主要内容

船舶与海洋工程,既不属于航海技术,也不属于轮机工程。而航海技术、轮机工程属于交通运输类学科。

(一)船舶与海洋工程与航海技术、轮机工程的专业归类不同。在大学专业目录中,船舶与海洋工程是属于海洋工程类学科,而航海技术、轮机工程属于交通运输类学科。

(二)船舶与海洋工程与航海技术、轮机工程的专业虽有一定联系,即都与船舶相关,但各自侧重不同,导致三者的学科属性有本质差别。船舶与海洋工程专业研究船舶轮机的工作原理、船舶的设计方法的学科,轮机工程专业则侧重于轮机操纵,而航海科学技术侧重于研究船舶如何在一条理想的航线上,从某一地点安全而经济地航行到另一地点。也就是说,船舶与海洋工程专业有设计、制造的特征,而航海技术和轮机工程是研究如何科学进行航行和海洋运输的。

5. 海洋设计概念

也许大海给贝壳的定义是珍珠,换言之,珍珠就是贝壳存在的意义之所在,没有珍珠的孕育,贝壳也就没有这般的熠熠生辉,这般的令人流连忘返!

6. 海洋设计思路

潜艇虽然也在海洋中航行,但它的形状却和一般的船舶不同。它那钝钝的头部,圆滚滚的身躯就像一个水滴。你知道为什么潜艇要做成这个样子吗?潜艇与水面舰船最大的区别,在于它要经常在水下航行,所以,在设计潜艇的时候,如何克服水的阻力,提高潜艇的航行速度,是设计人员首先要考虑的。

在潜艇刚诞生的时候,外形也类似于水面上的舰船,但这种造型有一个很大的缺点,就是潜艇在水下的航速最多只能达刻十几节。

设计人员根据流线型阻力小的原理,把潜艇的外形改成了类似水滴的形状现代水滴状潜艇则充分显示了它水下航行的优势。

光滑的外形,较小的阻力,使它最高航速达到30节以上,能与高速水面舰艇达到同步航行作战水平。

因此,现代所有最先进的高速潜艇,没有不采用水滴状外形的当然,潜艇的形状只是类似于水滴,实际要细长一些。

7. 海洋工程构筑物类型包括

以海洋水体为正常栖居环境的一切微生物。但由于学科传统及研究方法的不同,本文不介绍单细胞藻类,而只讨论细菌、真菌及噬菌体等狭义微生物学的对象。

海洋细菌是海洋生态系统中的重要环节。作为分解者它促进了物质循环;在海洋沉积成岩及海底成油成气过程中,都起了重要作用。

还有一小部分化能自养菌则是深海生物群落中的生产者。

海洋细菌可以污损水工构筑物,在特定条件下其代谢产物如氨及硫化氢也可毒化养殖环境,从而造成养殖业的经济损失。

但海洋微生物的颉颃作用可以消灭陆源致病菌,它的巨大分解潜能几乎可以净化各种类型的污染,它还可能提供新抗生素以及其他生物资源,因而随着研究技术的进展,海洋微生物日益受到重视。【特性】 与陆地相比,海洋环境以高盐、高压、低温和稀营养为特征。

海洋微生物长期适应复杂的海洋环境而生存,因而有其独具的特性。

嗜盐性 海洋微生物最普遍的特点。真正的海洋微生物的生长必需海水。海水中富含各种无机盐类和微量元素。

钠为海洋微生物生长与代谢所必需此外,钾、镁、钙、磷、硫或其他微量元素也是某些海洋微生物生长所必需的。

嗜冷性 大约90%海洋环境的温度都在5℃以下,绝大多数海洋微生物的生长要求较低的温度,一般温度超过37℃就停止生长或死亡。

那些能在 0℃生长或其最适生长温度低于20℃的微生物称为嗜冷微生物。

嗜冷菌主要分布于极地、深海或高纬度的海域中。其细胞膜构造具有适应低温的特点。那种严格依赖低温才能生存的嗜冷菌对热反应极为敏感,即使中温就足以阻碍其生长与代谢。

嗜压性 海洋中静水压力因水深而异,水深每增加10米,静水压力递增1个标准大气压。海洋最深处的静水压力可超过1000大气压。深海水域是一个广阔的生态系统,约56%以上的海洋环境处在100~1100大气压的压力之中,嗜压性是深海微生物独有的特性。来源于浅海的微生物一般只能忍耐较低的压力,而深海的嗜压细菌则具有在高压环境下生长的能力,能在高压环境中保持其酶系统的稳定性。

研究嗜压微生物的生理特性必需借助高压培养器来维持特定的压力。

那种严格依赖高压而存活的深海嗜压细菌,由于研究手段的限制迄今尚难于获得纯培养菌株。

根据自动接种培养装置在深海实地实验获得的微生物生理活动资料判断,在深海底部微生物分解各种有机物质的过程是相当缓慢的。

低营养性 海水中营养物质比较稀薄,部分海洋细菌要求在营养贫乏的培养基上生长。

在一般营养较丰富的培养基上,有的细菌于第一次形成菌落后即迅速死亡,有的则根本不能形成菌落。

这类海洋细菌在形成菌落过程中因其自身代谢产物积聚过甚而中毒致死。

这种现象说明常规的平板法并不是一种最理想的分离海洋微生物方法。

趋化性与附着生长 海水中的营养物质虽然稀薄,但海洋环境中各种固体表面或不同性质的界面上吸附积聚着较丰富的营养物。

绝大多数海洋细菌都具有运动能力。其中某些细菌还具有沿着某种化合物浓度梯度移动的能力,这一特点称为趋化性。

某些专门附着于海洋植物体表而生长的细菌称为植物附生细菌。海洋微生物附着在海洋中生物和非生物固体的表面,形成薄膜,为其他生物的附着造成条件,从而形成特定的附着生物区系。

多形性 在显微镜下观察细菌形态时,有时在同一株细菌纯培养中可以同时观察到多种形态,如球形椭圆形、大小长短不一的杆状或各种不规则形态的细胞。

这种多形现象在海洋革兰氏阴性杆菌中表现尤为普遍。

这种特性看来是微生物长期适应复杂海洋环境的产物。

发光性 在海洋细菌中只有少数几个属表现发光特性。

发光细菌通常可从海水或鱼产品上分离到。

细菌发光现象对理化因子反应敏感,因此有人试图利用发光细菌为检验水域污染状况的指示菌。【分布】 海洋细菌分布广、数量多,在海洋生态系统中起着特殊的作用。海洋中细菌数量分布的规律是:近海区的细菌密度较大洋大,内湾与河口内密度尤大;表层水和水底泥界面处细菌密度较深层水大,一般底泥中较海水中大;不同类型的底质间细菌密度差异悬殊,一般泥土中高于沙土。大洋海水中细菌密度较小,每毫升海水中有时分离不出1个细菌菌落,因此必须采用薄膜过滤法:将一定体积的海水样品用孔径0.2微米的薄膜过滤,使样品中的细菌聚集在薄膜上,再采用直接显微计数法或培养法计数。大洋海水中细菌密度一般为每40毫升几个至几十个。在海洋调查时常发现某一水层中细菌数量剧增,这种微区分布现象主要决定于海水中有机物质的分布状况。一般在赤潮之后往往伴随着细菌数量增长的高峰。有人试图利用微生物分布状况来指示不同水团或温跃层界面处有机物质积聚的特点,进而分析水团来源或转移的规律。 海水中的细菌以革兰氏阴性杆菌占优势,常见的有假单胞菌属等10余个属。相反,海底沉积土中则以革兰氏阳性细菌偏多。芽胞杆菌属是大陆架沉积土中最常见的属。 海洋真菌多集中分布于近岸海域的各种基底上,按其栖住对象可分为寄生于动植物、附着生长于藻类和栖住于木质或其他海洋基底上等类群。某些真菌是热带红树林上的特殊菌群。某些藻类与菌类之间存在着密切的营养供需关系,称为藻菌半共生关系。 大洋海水中酵母菌密度为每升 5~10个。近岸海水中可达每升几百至几千个。海洋酵母菌主要分布于新鲜或腐烂的海洋动植物体上,海洋中的酵母菌多数来源于陆地,只有少数种被认为是海洋种。海洋中酵母菌的数量分布仅次于海洋细菌。 在海洋环境中的作用。海洋堪称为世界上最庞大的恒化器,能承受巨大的冲击(如污染)而仍保持其生命力和生产力;微生物在其中是不可缺少的活跃因素。自人类开发利用海洋以来,竞争性的捕捞和航海活动、大工业兴起带来的污染以及海洋养殖场的无限扩大,使海洋生态系统的动态平衡遭受严重破坏。海洋微生物以其敏感的适应能力和快速的繁殖速度在发生变化的新环境中迅速形成异常环境微生物区系,积极参与氧化还原活动,调整与促进新动态平衡的形成与发展。从暂时或局部的效果来看,其活动结果可能是利与弊兼有,但从长远或全局的效果来看,微生物的活动始终是海洋生态系统发展过程中最积极的一环。 海洋中的微生物多数是分解者,但有一部分是生产者,因而具有双重的重要性。实际上,微生物参与海洋物质分解和转化的全过程。海洋中分解有机物质的代表性菌群是:分解有机含氮化合物者有分解明胶、鱼蛋白、蛋白胨、多肽、氨基酸、含硫蛋白质以及尿素等的微生物;利用碳水化合物类者有主要利用各种糖类、淀粉、纤维素、琼脂、褐藻酸、几丁质以及木质素等的微生物。此外,还有降解烃类化合物以及利用芬香化合物如酚等的微生物。海洋微生物分解有机物质的终极产物如氨、供主要氢和系中,某一或自养微生物,、浮游动物以及底栖动物等提供直接的营养源。这在食物链上有助于初级或高层次的生物生产。在深海底部,硫细菌实际上负担了全部初级生产。 在海洋动植物体表或动物消化道内往往形成特异的微生物区系,如弧菌等是海洋动物消化道中常见的细菌,分解几丁质的微生物往往是肉食性海洋动物消化道中微生物区系的成员。真菌、酵母和利用各种多糖类的细菌常是某些海藻体上的优势菌群。微生物代谢的中间产物如抗生素、维生素、氨基酸或毒素等是促进或限制某些海洋生物生存与生长的因素。某些浮游生物与微生物之间存在着相互依存的营养关系。如细菌为浮游植物提供维生素等营养物质,浮游植物分泌乙醇酸等物质作为某些细菌的能源与碳源。 由于海洋微生物富变异性,故能参与降解各种海洋污染物或毒物,这有助于海水的自净化和保持海洋生态系统的稳 定。

顶一下
(0)
0%
踩一下
(0)
0%